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Abstract

Phase-field approach for predicting fracture based failures in structures is gaining importance like
never before. This approach is an elegant numerical technique which doesn’t require tracking of
crack surfaces and allows to study crack branching and merging without much additional effort.

The research presented in this work focuses on numerical implementation of quasi-static brittle
fracture for standard benchmark problems and analyzing the effects of various parameters like
viscosity, regularization length and boundary conditions. For facilitating numerical implementa-
tion of the anisotropic formulation of phase field model, a unique expression for elasticity tensor
has been derived. Three different modeling strategies for the pre-existing crack are presented
and a comparison is made between them considering the factors like time for crack initiation
and maximum attainable force during simulation. We compare our implemented phase field
model results with the linear elastic fracture mechanics (LEFM) for mode I loading for all three
modeling strategies for pre-existing crack.
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Chapter 1

Introduction

Solids are susceptible to many failure phenomenas in which fracture is the most prominent one. It
is also an extensively investigated process due to its detrimental consequences for structures. The
prediction of path to be taken by one or several cracks in a structural component is considered
to be one of the most complicated aspects of the theory of fracture. According to the classical
theories of Griffith[10] and Irwin [14], cracks can propagate in a material if the energy release
rate reaches a critical value. Although Griffith theory gives us a criteria for crack propagation
but it is unable to predict crack initiation. Variational methods based on energy minimization
helps us to overcome these defects of classical Griffith-type theory of brittle fractures.

Owing to the complexity of the phenomena involved, one generally relies on numerical techniques
or computational methods to solve these variational methods. Finite Element Method (FEM) is
one of the most popular numerical methods to solve Partial Differential Equations (PDEs). One
of the factor to make modeling of crack a complex topic is its discontinuous nature. Another
issue is of tracking the crack while it is propagating. Various computational methods are popular
in fracture mechanics to study these behaviors. Few of them are Extended Finite Element
Methods (XFEM), Cohesive Zone Methods, Cohesive Segment Methods and Phase-Field Method.
XFEM and cohesive methods are called discrete fracture models as they represent the crack as
a discontinuous entity which makes the tracking of crack very cumbersome. In our work, we will
study the phase field method approach for quasi-static brittle fracture. Within this approach, a
crack is represented by a continuous phase-field variable, which evolves according to an energy
minimization problem. There is no need to track crack surfaces and thus it allows modeling of
complex crack topologies. Other advantage is the ability to simulate complicated processes like
crack initiation, propagation and bifurcation without needing any additional criteria.

One of the important property of the phase-field model is the regularization parameter or the
quantity inherent to the diffusive crack width approximation. It’s relation to the mesh size is
extremely volatile and an appropriate relation needs to be maintained between them. Extremely
fine meshes near the crack phase field transition zone are generally required. Another factor to
take into consideration is the numerical parameter to model artificial stiffness of the material.
We will use the term viscosity for this parameter. These two factors have a significant impact on
the numerical implementation although boundary conditions of the model also plays a pivotal
role.

In case of brittle fracture, all the processes follow laws of linear elasticity. But if we see on
microscopic level, just near the crack tip, we could see the material behaving inelastically. But
since this area is so small, linear elastic solution is a good approximation of the actual stress and
strain states. The Stress Intensity Factor (SIF) controls the processes in this area and its value
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is generally used as a criteria for crack initiation.

There are many different methods to model a pre-existing crack in the body. The most intuitive
one is where the crack is physically present in the geometry of the body. This could be considered
as replicating a body undergoing an actual experiment in the laboratory. Another method is
where the crack is modeled from the phase field variable. There are different methods to introduce
such a virtual crack and will be discussed in detail in section 2.4.

The thesis is organized in five chapters. The first chapter as already seen gives an introduction
to our work. In second chapter, we begin by introducing the fundamental concepts of fracture
mechanics including LEFM and then present the governing equations of a phase field model
for brittle fracture. The third chapter focuses on the employed numerical solution procedure
using a derived anisotropic expression for elasticity tensor. The implementation aspects of the
solution procedure are demonstrated by means of numerical examples in the fourth chapter. A
plate with a pre-existing crack under plane strain conditions is subjected to two different loading
conditions. Along with verification of our results with reference solutions, we study the effect of
change in viscosity parameter. Three pre-existing crack modeling strategies results are compared
and finally we test our phase field model results with those of LEFM. The last chapter summarize
our observations and we conclude with the outlook on future work.
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Chapter 2

Phase Field Modeling of Brittle
Fracture

In this chapter, we will revise some basic concepts of linear elasticity which will be followed by
introduction to fracture mechanics and some other relevant information on topics like Griffith’s
criteria and fracture toughness. Then we will present the formulation of phase field model for
brittle fracture in plane strain conditions. In the last section, various strategies to model pre-
existing crack in a body will be discussed. Also, in our work we assume homogeneous isotropic
material behavior.

2.1 Linear elasticity

As the name suggests, linear elasticity is a branch of continuum mechanics where the relationship
between stress and strain is considered to be linear. It is a simplification of the more general
nonlinear theory of elasticity and assumes small deformations or infinitesimal strains in a body.
Also, no yielding happens in case of linear elasticity. The boundary value problem (BVP) to be
solved in this case is based on three equations. First equation is the balance of linear momentum,
represented as

divσ + b0 = ρü in B (2.1)

where σ is the Cauchy stress tensor, b0 is the body force per unit volume, ρ is the mass density,
ü is the acceleration i.e. the second time derivative of the displacement vector u and B represents
an arbitrary body. Also divσ = σij,jei where ei with i = 1, 2, 3 is the orthonormal basis vector.
Second equation gives us the relationship between strain (ε) and displacement and is given as

ε(u) = ∇su =
1

2
[ui,j + uj,i]ei ⊗ ej in B (2.2)

where ∇su is the symmetric part of the quantity ∇u. The last equation is the constitutive law
and is represented as

σ = C : ε in B (2.3)

where C is the fourth-order elasticity or stiffness tensor. Eq.(2.3) is a tensor representation of
Hooke’s law of elasticity. Due to symmetry of the stress and strain tensor and the constitutive
relation in eq.(2.3), the tensor component Cijkl possess the symmetries

Cijkl = Cjikl = Cijlk = Cklij (2.4)
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where Einstein’s summation convention applies for the index notation. In case of isotropic
material, which has the same behavior in all directions, C depends on Lamé constants: λ and µ

Cijkl = λδijδkl + µ(δikδjl + δilδjk) (2.5)

The relations between these Lamé constants,Young’s modulus E, Poisson’s ratio ν are

λ =
νE

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
(2.6)

If we are given any two quantities like λ and µ for a material, then using above relations we can
compute the other properties like E and ν.

2.2 Fracture mechanics

Fracture mechanics is a methodology which is used to predict initiation and propagation of cracks
under a given loading situation. Part in which failure has to be diagnosed contains a pre-existing
crack. This presence of a crack results in failure prior to that predicted using strength of materials
methods. Some basic assumptions in this field are that we have a macroscopic crack i.e. length
of the crack is on same or similar length scale as compared to that of the body and also we don’t
treat crack nucleation. Another basic assumption is that the crack tip is the point where failure
of the loaded structure starts. Fracture mechanics help us to find answers to many fundamental
questions such as: Will the existing crack grow under the applied external load? What is the
maximum permissible crack size before failure occurs under prescribed loading conditions?

The propagation of crack in a body also depends on the type of its material. Brittle materials
tends to have a sudden failure as compared to ductile ones. Under stress, they crack rapidly with
little or no evidence of plastic degradation. In this case, only a very small region around the
crack tip undergoes plastic deformation so the linear elastic assumption applies and we generally
use Linear Elastic Fracture Mechanics (LEFM) to study these kind of materials. Elastic Plastic
Fracture Mechanics (EPFM) is used for materials that exhibit evident plasticity. In this work,
we will mainly focus on LEFM.

2.2.1 Fracture modes

We can classify external loads into three independent types, leading to a simplified scenario where
the effect of each type can be determined individually. And if required, principle of superposition
can be applied in appropriate manner to find the combined effect of different loads [22]. The
three crack opening modes are shown in Fig. 2.1 and are defined as

• Mode I : Opening mode - This type of mode occurs when we have a tensile stress which is
acting normal to the plane of crack. We get a symmetric crack opening in this case. This
is the most important case for practical applications and is usually the most studied one.

• Mode II : Shearing mode - The applied stress is parallel to the plane of crack and is
perpendicular to the leading edge of crack.

• Mode III: Tearing mode - In this mode, crack surfaces also separate in the plane of the
crack but parallel to the leading edge of the crack.
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Figure 2.1: Modes of fracture. [16]

2.2.2 Linear elastic fracture mechanics (LEFM)

Complex processes of bond breakage occurs at the crack tip, which are not explicitly described by
continuum approaches. The separation of material occurs within this small region called process
zone. This zone must be negligibly small as compared to all other macroscopic dimensions of the
structure, including the crack. As the name implies, linearity is a further assumption in LEFM.
Structure response is linear elastic throughout the fracture process. But with this assumption,
near crack tip field yields solutions with stress and strain singularities. But in reality, the material
will deform inelastically around crack tip in the so called plastic zone, so that no infinite stresses
or strains occurs in that area. If this plastic zone is very small, then linear elastic solution is still
applicable. This usually holds true for brittle materials but not for ductile ones. Fig. 2.2 shows
the process and plastic zone near a crack tip.

process zone plastic zone

K determined field i.e. elastic field

Figure 2.2: Regions around a crack tip

The stress intensity factor (SIF) K controls the processes in plastic and process zone. It is one
of the characterizing parameter of LEFM and controls the crack growth. It depends on the
geometry of the sample, the crack length and the loading. Since mode I type is the common
form of loading, we will discuss it in some more detail.

Crack under mode I loading

For mode I loading, the SIF is written as KI. We assume a straight crack of length 2a in an
infinitely large sheet of homogeneous isotropic linear-elastic material as shown in Fig. 2.3. Since
we are discussing mode I loading, we have a constant tension σ acting vertically on top and
bottom boundary. By means of complex variables, this linear elastic problem can be solved
analytically in two dimensional settings. The result of this problem is the stress state at the
crack tip in polar coordinates (r, θ) where θ ∈ [−π, π]. All field variables are proportional to
KI = σ

√
πa [18]. The expression for stress fields within a particular area around the crack tip
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(considered to be much larger than plastic and process zone) is [18]
σx
σy
τxy

 =
KI√
2πr

cos
θ

2


1− sin(θ/2) sin(3θ/2)
1 + sin(θ/2) sin(3θ/2)

sin(θ/2) sin(3θ/2)

 (2.7)

And displacement field near the crack tip is [18]{
ux
uy

}
=

KI

2µ

√
r

2π

{
cos(θ/2)[κ− cos θ]
sin(θ/2)[κ− cos θ]

}
(2.8)

where κ is an elastic constant and is defined as 3 − 4ν for plane strain cases and as
3− ν
1 + ν

for

plane stress scenario [18].

σ

σ

x

y
r

θ

σy

σy

σxσx

σxy

2a

zero separation

Crack tip

Figure 2.3: Crack in an infinite sheet under tension along with coordinate system

Analogous expressions can be formulated for mode II and mode III loading cases. The SIF can
be used to formulate a fracture criteria as introduced by Irwin [14]. According to this criteria, a
crack can propagate through the body when

KI ≥ KIC (2.9)

where KIC is the fracture toughness and is a material dependent parameter. Similar criteria can
be formulated for other modes of loading as well. A more general formulation for the mixed
mode case is represented as

f(KI,KII,KIII) = 0

where f is a function consisting terms of all three modes SIF.
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2.2.3 Griffith’s criteria

Griffith’s criteria takes conservation of energy in the system as its starting point [10]. And in
order to account for the energy required for fracture, an extra term is added in the energy balance
equation and is termed as fracture surface energy Γse. This Γse is assumed to be proportional
to the area A of the crack,

Γse = GcA (2.10)

where Gc is called crack resistance or crack resistance force of fracture toughness or just as critical
energy release rate. It is defined as the energy required to create a unit area of fracture surface.
It is a constant and depends only on the material. From energy balance we have

Ė + K̇ + Γ̇se = W +Q (2.11)

where E is the internal energy, K is the kinetic energy, W is the rate of work associated to the
external forces, Q is the rate of heat supply and Ẋ represents the time derivative of a quantity
X. It is assumed that there is no heat supply so Q = 0. And for the quasi-static cases, we
don’t have any contribution from kinetic energy term also so K̇ = 0. Simplified energy balance
equation reads as

Ė + Γ̇se = W (2.12)

or
Γ̇se = W − Ė (2.13)

where the crack starts propagating if Γ̇se ≥ 0. In pure elasticity case, we can write the internal

energy E as an inner potential E = Πint and similarly external work as W = −dΠext

dt
. Thus the

energy balance can be written as

dΠint

dt
+

dΠext

dt
+

dΓse
dt

= 0 (2.14)

dΠ

dt
+

dΓse
dt

= 0 (2.15)

where Π is the total potential energy. For an infinitesimal extension dA, along pre-existing crack
path, eq.(2.15) becomes (dΠ

dA
+

dΓse
dA

)dA

dt
= 0 (2.16)

The energy release rate G is defined as G = −dΠ

dA
, i.e. release of the potential energy with an

infinitesimal crack extension. And from eq.(2.10), we can simplify eq.(2.16) to

(Gc −G)Ȧ = 0 (2.17)

So we have G = Gc as a criteria for initiation of crack propagation. The evolution law for the
area of the crack can be written as Kuhn-Tucker complementary conditions [6]

• Ȧ ≥ 0 (irreversibility),

• G−Gc ≤ 0 (Griffith’s criteria),

• Ȧ(G−Gc) = 0 (conservation of energy).

For mode I crack, Irwin showed that the relationship between energy release rate G and stress
intensity factor KI is

G = GI =
K2

I

E′
(2.18)
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where E
′

= E/(1−ν) for plane strain assumptions and for 3D case. For plane stress case E
′

= E.
GI is the energy release rate for mode I loading.

In present times, the defining property in LEFM for crack initiation is the critical stress intensity
factor KIC, under plane strain conditions. If we know Gc, which is a material property and any
other two constitutive parameters like λ and µ, using eq.(2.6) and eq.(2.18), we can find the
value of KIC as shown in eq.(2.20). Here we use the fact that crack will propagate when G ≥ Gc
and then use the relation in eq.(2.18) for plane strain conditions to obtain

1− ν2

E
K2

I ≥ Gc, (2.19)

or at that critical point, we have KI = KIC, we get the relation

KIC =

√
GcE

1− ν2
(2.20)

This relation will be used to verify our implementation in section 4.4.

2.3 Phase field fracture modeling

In fracture mechanics, numerical methods faces a challenge of discontinuity in the displacement
field at the crack area. Popular methods like Extended Finite Element Methods (XFEM) and
Cohesive Zone Methods encounters this issue too and are called discrete fracture models. These
methods require an information of the crack path. In order to solve this issue of discontinuous
entity, usually remeshing strategies, where after every crack progression the mesh is updated, are
employed. But one has to track the crack during the entire course of simulation which becomes
numerically expensive for complicated geometries and for three dimensional objects.

In order to solve this difficulty, a conceptually different modeling strategy has gained popularity
in recent years. The so called phase field model incorporates an additional continuous field
variable, the field order parameter. It is a scalar quantity and its value describes the condition
of the system. It interpolates smoothly between fully cracked material and undamaged material
. In fracture mechanics, this field order parameter is referred as crack field or simply phase field.
Phase field method allows us to study problems involving kinking, crack branching and merging
without much additional efforts. These were considered as a challenging task in discrete fracture
models. The evolution of phase field under loading conditions represents the fracture process
itself and there is no separate requirement to track it. We will denote this parameter as d in our
work. Following the work of Miehe et al. [20], we will define values of d as

d =

{
0 : undamaged material

1 : fully damaged material
(2.21)

The phase field model of fracture comprises of a system of two coupled non-linear PDEs, one of
which is a modified balance of linear momentum equation while the other governs the evolution
of crack. There are two major ways to solve these coupled equations, monolithic and staggered
[7]. In case of monolithic, we solve for both phase field and displacement simultaneously. This
technique is more efficient but is less robust due to which modified Newton-Raphson schemes
had to be applied to solve the convergence issues. On the other hand, in staggered solution
strategy we first solve for phase field assuming displacement as a constant and then using the
obtained phase field, we solve for displacement. The obtained displacement is used to solve
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phase field again. This iterative process is continued until a certain pre-defined stopping criteria
is reached. There is another algorithm which is a slight variation of staggered one. It is called
alternate minimization algorithm which can be used if our phase field equation is not dependent
on displacement. In this strategy, we solve for phase field firstly. When we have a solution for it,
we use it to solve for displacement which is dependent on the phase field solution obtained. In
other words, we try to solve for minimization of each equation separately. This algorithm and
the staggered one are more robust but less efficient as compared to monolithic one.

Regularization length

(a) Sharp crack at point x = 0. (b) Diffusive crack with regularization length l.

Figure 2.4: Sharp and diffusive crack topology in terms of crack phase field d. [20]

Another important aspect of the phase field model of fracture is the length scale parameter, also
referred to as regularization length and denoted by l in this work. We will explain this concept
with help of a 1D model problem. Consider having an infinite bar having the domain B = Γ×L,
where Γ represents the cross-section of the bar and L = [−∞,+∞]. Suppose we have a crack at
x = 0, where x ∈ L. At this point, Γ represents the fully broken crack surface as shown in Fig.
2.4(a). As defined in eq.(2.21), d = 1 at this point. Now since d has to interpolate smoothly
between this cracked region and other undamaged locations, we approximate it using relation
[20]

d(x) = e−|x|/l, (2.22)

where regularization length l controls the width of the transition between undamaged to fully
cracked zone. For l→ 0, we get the sharp crack topology as defined in Griffith’s theory for brittle
materials. Also the exponential function has the desired property of d(0) = 1 and d(±∞) = 0.
It plays a significant role in the numerical implementation as it has to be adapted to the given
mesh size h to be able to resolve the transition from d = 1 to d = 0. The relation l > h has
to hold true, although it is recommended to choose it as l = 1.5, ...3h depending on the order
of the ansatz function [3]. In some literature, l has also been shown to be linked with material
properties and requires experimental measures to be identified [23]. Another aspect in this view
is that since l scales the crack resistance Gc or the critical energy release rate, which is a critical
value for crack propagation, it should be taken as material parameter [3].

2.3.1 Formulation

Consider an arbitrary body B ⊂ Rdim (with dim ∈ 1, 2, 3) with external boundary ∂B ⊂ Rdim−1

and internal crack boundary Γ(t) ⊂ Rdim−1 (see Fig. 2.5). Let u(x, t) ∈ Rdim be the repre-
sentation of displacement of a point x ∈ B at time t ∈ [0, T ], where T ⊂ R. The displacement
field satisfies the Dirichlet boundary condition u = uD on ∂BD ⊆ ∂B and Neumann boundary
condition σ · n = tN on ∂BN ⊆ ∂B, where tN is the traction.

9



Γ

B

∂B

∂BD
u = uD

∂BN
tN

Figure 2.5: Schematic representation of sharp crack surface Γ in the body B.

Now that we have a representation of our sharp crack topology, we would like to go back to
the Griffith’s energetic fracture criteria. As mentioned before, his theory has a limitation of
predicting the crack path, nucleation of new cracks or branching of cracks. To overcome these
limits, a variational reformulation of the model has been proposed by Francfort and Marigo [9].
Their reformulation is dependent only on the principle of global minimality of the total energy,
which consists of surface or crack energy, strain energy and the potential energy of external
applied forces. Following their approach and taking potential energy of external applied forces
to be zero, the crack initiation and propagation is governed by the minimization of the free
energy functional given by

E(u,Γ) =

∫
B

Ψ(ε(u)) dV +

∫
Γ

Gc dΓ (2.23)

where Ψ(ε(u)) is the elastic energy. This free energy function or the total potential energy of the
body is the sum of elastic energy and fracture energy as shown in eq.(2.23). A regularized version
of the variational formulation has been proposed in Bourdin et al. [5] for efficient numerical
implementation.

Γ B

∂B

∂BD
u = uD

∂BN
tN

2l

Figure 2.6: The regularized crack surface.

A secondary field variable d(x, t) as introduced in eq.(2.22) (as the crack phase field), is used to
indicate cracks (see Fig. 2.6), where d(x, t) ∈ [0, 1] is the phase field of the material point x ∈ B
at time t ∈ T . The phase field d satisfies Neumann condition ∇d · n = 0 on complete boundary
∂B. Following the work of Miehe et al.[20], after regularization the energy functional (eq.(2.23))
becomes

E(u, d) =

∫
B

[
Ψ(ε(u), d) +Gcγ(d,∇d)

]
dV (2.24)
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where γ is the crack surface density function per unit volume of the body and is defined as [20]

γ(d,∇d) =
1

2l
d2 +

l

2
|∇d|2 (2.25)

The elastic energy is degraded due to fracture by a phase field based penalty as

Ψ(ε, d) = [g(d) + k]Ψ+(ε) + Ψ−(ε) (2.26)

where g(d) is the degradation function, k is a small positive parameter, Ψ+(ε) and Ψ−(ε) are ten-
sile and compressive components of the elastic energy. The splitting comes due to the anisotropic
formulation. In order to introduce above quantities, we would first split the strain tensor into
tensile(positive) and compressive(negative) parts as

ε = ε+ + ε− (2.27)

where ε+ and ε− are obtained from spectral decomposition of strain tensor and are defined as

ε+ =
δ∑
i=1

〈εi〉+n i ⊗ n i (2.28)

and

ε− =
δ∑
i=1

〈εi〉−n i ⊗ n i (2.29)

with the bracket operators meaning

〈x〉+ =
x+ |x|

2
(2.30)

and

〈x〉− =
x− |x|

2
(2.31)

So now the positive and negative parts of the elastic strain energy can be defined as

Ψ+(ε) = λ〈tr[ε]〉2+/2 + µtr[ε2
+] = Ψ(ε+) (2.32)

Ψ−(ε) = λ〈tr[ε]〉2−/2 + µtr[ε2
−] = Ψ(ε−) (2.33)

Selective degradation of elastic energy is obtained as only tensile component gets multiplied by
the degradation function thereby inhibiting crack growth under compression. Inserting eq.(2.25)
and eq.(2.26), the functional as defined in eq.(2.24), can be modified as

E(u, d) =

∫
B

[
[g(d) + k]Ψ+(ε) + Ψ−(ε) +Gc

( 1

2l
d2 +

l

2
|∇d|2

)]
dV (2.34)

where the degradation function g(d) models the release of elastic energy. It is a monotonically
decreasing function with the following properties

g(0) = 1 , g(1) = 0 , g′(1) = 0. (2.35)

The first two conditions denotes the undamaged and fully broken states respectively, while the
last one ensures that the fracture force converges to a finite value in case the material is fully
broken. A simple function satisfying the properties in eq.(2.35) is

g(d) = (1− d)2 (2.36)

Several other possibilities for this function and their effects on crack nucleation and propagation
can be found in literature [17]. The small positive parameter k in eq.(2.34) is introduced to avoid
ill-posedness of the applied numerical method in case of fully broken state i.e. d = 1.
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The formulation shown in eq.(2.26) can be used to obtain a similar expression for the stress
tensor σ also

σ = ∂εΨ(ε, d) = [(1− d)2 + k]∂εΨ+(ε) + ∂εΨ−(ε)

= [(1− d)2 + k]σ+ + σ−

= [(1− d)2 + k][λ〈tr[ε]〉+1 + 2µε+] + [λ〈tr[ε]〉−1 + 2µε−]

(2.37)

where σ+ and σ− corresponds to the tensile and compressive components of the stress tensor σ
and are given as

σ+ = λ〈tr[ε]〉+1 + 2µε+ = ∂εΨ+ (2.38)

σ− = λ〈tr[ε]〉−1 + 2µε− = ∂εΨ− (2.39)

The Euler-Lagrange equations for the energy functional (eq.(2.34)) yields the strong form for
rate independent case consisting of contribution from each displacement and phase field as [20]

Div[σ(u, d)] + b0 = 0 in B
Gcδdγ(d)− 2(1− d)H = 0 in

(2.40)

where b0 is a prescribed volume force in B and δdγ(d) is the variational derivative of crack surface
density function eq.(2.25) and is defined as

δdγ(d) = ∂dγ −Div[∂∇dγ] =
1

l
[d− l2∆d] (2.41)

H here is a history field variable and represents the maximum tensile elastic energy up to the time
t as defined in eq.(2.42). It is responsible for ensuring the irreversibility condition Γ(t) ⊆ Γ(t+dt)
of the crack and is the main driving force for governing equation of phase field.

H(x , t) = max
s∈[0,t]

Ψ+
0 (ε(x , s)) (2.42)

The eq.(2.40) can be used to determine the current displacement u and phase field d using the
definitions of History field H eq.(2.42), stresses σ eq.(2.37) and the variational derivative δdγ(d)
eq.(2.41).

Viscous regularization

Aside the rate independent formulation, there is a possibility of stabilizing the numerical treat-
ment of the above formulation by introduction of a viscous regularization parameter η [20]. We
can obtain the rate independent case by just putting η = 0. So the generalized strong form
comes out as

Div[σ(u, d)] + b0 = 0 in B
Gcδdγ(d) + ηḋ− 2(1− d)H = 0 in B

(2.43)

Using the result of eq.(2.41), we get our final strong form for quasi-static brittle fracture and it
is represented by a coupled system of PDEs which are solved for u and d respectively.

Strong form

{
Div[σ(u, d)] + b0 = 0 in B
(Gc/l)[d− l2∆d]− 2(1− d)H+ ηḋ = 0 in B

(2.44)

And they are subjected to the following boundary conditions,

Boundary conditions


u(x, t) = uD(x, t) on ∂BD

σ · n = tN(x, t) on ∂BN

∇d · n = 0 on ∂B
(2.45)
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2.4 Modeling pre-existing crack

There are many ways to model the initial crack boundary Γ in the body. We will give a brief
overview of these methods and will explain the difference between them. The methods include

• Mesh induced crack (MI): In this method, an initial crack is modeled as a discontinuity
in the geometry itself as shown in Fig. 2.7(a). This method is most commonly used to model
a crack but it can be time consuming for complex geometries and 3D cases. It has also
been used in [20].

• Mesh induced crack with prescribed d (MId) : As can be seen in Fig. 2.7(b), this
approach is similar to the first one but also includes the Dirichlet boundary condition
enforcing d(x) = 1 on the crack surface. Such a procedure has been adopted in [11].

(a) MI

d = 1

d = 1

(b) MId

Figure 2.7: Single edge notch specimen with MI and MId

• Phase field induced crack (PI) : Here the crack is modeled via a Dirichlet type con-
straint d = 1 on the required nodes of the mesh as can be seen in Fig. 2.8(a). No discrete
crack is required in the geometry. Detailed explanation is followed in section 4.3.3.

• History induced crack (HI): The technique used here is similar to PI but instead of
setting d = 1 directly on nodes, initial crack is modeled with the help of a local history
variable (eq.(2.42)).

d = 1

(a) PI

d = 1

x

y

(0,0) (0,a)

Decreasing d

(b) HI

Figure 2.8: Single edge notch specimen with PI and HI

Klinsmann et al.[15] proposed a formula for this variable H0, where the region ahead of
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the crack tip is considered. The initial non-zero history field H0 looks like

H0 = αe−(y/β)2 ×
{

1, if x < a,

e−(x/β)2 , if x ≥ a,
(2.46)

where the crack is located at y = 0 and extends from the edge at x = 0 to x = a as shown
in Fig. 2.8(b). Here α and β are constants and are given values, α = 104 and β = l/10.
The main idea here is to give the initial crack a type of form, which generally describes the
crack grown under external loading. Since the history field at that grown crack has very
steep decrement as one moves away from it, the variables α and β are given such selective
values. Klinsmann compared the HI numerical results with MI for two setups and find
that HI is in good agreement with standard results.

In this work, we will mainly focus on the first three types of modeling and will compare their
results.
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Chapter 3

Numerical Solution Procedure and
Implementation

In this chapter we will clarify the procedure for solving phase field formulation using finite element
discretization. For a detailed explanation on linear finite element, we refer the reader to [24].

The Boundary Value Problem (BVP) consisting of contributions from phase field and displace-
ment reads as

Div[σ(u, d)] + b0 = 0 in B
Gc
l

[d− l2∆d]− 2(1− d)H+ ηḋ = 0 in B
u(x, t) = uD(x, t) on ∂BD

σ · n = tN(x, t) on ∂BN

∇d · n = 0 on ∂B

(3.1)

As defined in section 2.3.1, Γ ⊂ B is a possible existing sharp crack surface on the body B.
Displacement is prescribed by Dirichlet boundary condition u(x, t) = uD(x, t) on the boundary
∂BD. Similarly traction tN(x, t) is prescribed on the Neumann part ∂BN of the boundary ∂B.
The fracture phase-field d is considered to be driven by the history function H. As a result, we
don’t consider any prescribed external loading associated with the phase-field. The Neumann
condition ∇d · n = 0 is considered on the complete boundary ∂B.

The set of Partial Differential Equations (PDEs) is presently in the strong form i.e. it requires
solutions to be twice continuously differentiable.In order to relax the conditions on family of
solutions, we convert the equations into weak form.

3.1 Variational formulation

Computationally, it is preferred to solve the weak form over strong form for two main reasons.
Firstly, a general solution u ∈ H1(B) is simpler to satisfy than u ∈ C2(B) (e.g.,piecewise linear
interpolation is sufficient in the weak form but that’s not the case in strong form). Secondly,
rather than solving PDEs the weak form is basically solving a system of algebraic equations.
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3.1.1 Phase-field formulation

Variational formulation of the problem or so called weak form can be derived by multiplying
from the left, the governing equation for phase-field from eq.(3.1) with an appropriate scalar test
function ϕ ∈ S1 and integrate over entire domain B, leading to

Gc
l

∫
B

ϕd dV −Gcl
∫
B

ϕ∆d dV − 2

∫
B

ϕ(1− d)H dV + η

∫
B

ϕḋ dV = 0 (3.2)

Applying integration by parts on the second term in index notation

Gcl

∫
B

ϕ∆d dV = Gcl

∫
B

ϕd,iidV

= Gcl

∫
∂BN

ϕd,inidA−Gcl
∫
B

ϕ,id,idV

= Gcl

∫
∂BN

ϕ(∇d · n)dA−Gcl
∫
B

∇ϕ · ∇d dV

As mentioned earlier, ∇d ·n = 0 on ∂B and thus the first term vanishes in the above expression.
Putting it back in eq.(3.2), we get our weak from for phase-field: Find d ∈ U1 s.t.

Gc
l

∫
B

ϕd dV +Gcl

∫
B

∇ϕ · ∇d dV − 2

∫
B

ϕ(1− d)H dV + η

∫
B

ϕḋ dV = 0 ∀ϕ ∈ S1 (3.3)

with the function spaces being given as

U1 =
{
d ∈H1(B) : d

∣∣
Γ

= 1
}

S1 =
{
ϕ ∈H1(B) : ϕ

∣∣
∂BD = 0

} (3.4)

Here, H1 is the chosen Sobolev space.

3.1.2 Displacement formulation

The governing equation for the displacement from eq.(3.1) is multiplied with an appropriate
vector test function Φ ∈ S2 and integrate over domain B∫

B

Φ ·Div[σ(u, d)] dV = −
∫
B

Φ · b0 dV (3.5)

Applying integration by parts on the first term in index notation yields,∫
B

Φ ·Div[σ(u, d)]dV =

∫
B

Φiσij,jdV

=

∫
∂BN

ΦiσijnjdA−
∫
B

Φi,jσijdV

=

∫
∂BN

Φ · (σ · n)︸ ︷︷ ︸
tN

dA−
∫
B

∇Φ : σdV
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which on inserting back into (3.5) leads to

−
∫
B

∇Φ : σ dV = −
∫
B

Φ · b0 dV −
∫
∂BN

Φ · tN dA (3.6)

Since in our case we do not have any external body forces (b0 = 0) or tractions (tN = 0), the
right hand side vanishes. Further using the results from eq.(2.37), we have the following weak
form for displacement: Find u ∈ U2 s.t.

−
∫
B

∇Φ : ((1− d)2 + k)σ+ dV −
∫
B

∇Φ : σ− dV = 0 ∀Φ ∈ S2 (3.7)

with the function spaces being given as

U2 =
{

u ∈H1(B) : u
∣∣
∂BD = uD

}
S2 =

{
Φ ∈H1(B) : Φ

∣∣
∂BD = 0

} (3.8)

where H1 is the Sobolev space of dim-dimensional vector valued functions having a weak deriva-
tive.

3.2 Finite element formulation

Starting point here is the continuous weak form for the phase-field and displacement obtained in
the previous section. Main idea of the Finite Element Method(FEM) is the approximation of the
test and trial function spaces, defined in (3.4) and (3.8) respectively, by means of finite dimen-
sional functional spaces. These discrete spaces usually comprise of polynomial shape functions
which interpolates the solution between the discrete values obtained at the mesh nodes.

We would like to define shape functions that are local and hence ease out the overall computation
process by getting a simple way to enforce Dirichlet boundary conditions. The domain B is
partitioned into finite elements Be ∈ Bh, where Bh is a conforming triangulation of B and nel
is the total number of elements in the triangulation (see Fig. 3.1). As the approximations are
defined element wise, the integral over body B has to be subdivided into integrals over the
particular finite elements Be ∫

B

(...)dV ≈
∫
Bh

(...)dV =

nel∧
e=1

∫
Be

(...)dV

where the operator
nel∧
e=1

denotes the assembly of all element contributions.

Be

∂B

∂Bh Bh
B

Figure 3.1: Triangulation of the geometry B
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We will start with the weak form for phase-field as stated in eq.(3.3) and will discuss its time
discretization.

3.2.1 Time discretization

Implicit Euler scheme was chosen as time integration method in order to avoid stability issues
which in case of explicit scheme depends on step size of time. We consider field variables at
discrete times 0, t1, t2...tn, tn+1, ..., T of the process interval [0, T ]. We will focus on the time
interval [tn, tn+1], where

∆t = tn+1 − tn > 0 (3.9)

denotes the time increment. In further discussion, it is assumed that all field variables at time
tn are known and at time tn+1 are to be determined. Adopting a compact notation, we drop
in what follows the subscript n + 1 and assume that all variables without subscript are to be
evaluated at time tn+1. In order to clarify, we define

u(x) := u(x, tn+1) and d(x) := d(x, tn+1), respectively (3.10)

for the displacement and phase-field at the current time tn+1 and

un(x) := u(x, tn) and dn(x) := d(x, tn) (3.11)

for the quantities at time tn. The rate of change of phase-field in eq.(3.3) can then be written as

ḋ =
d− dn

∆t

which upon replacing in eq.(3.3), yields

Gc
l

∫
B

ϕd dV+Gcl

∫
B

∇ϕ ·∇d dV−2

∫
B

ϕ(1−d)H dV+
η

∆t

∫
B

ϕd dV− η

∆t

∫
B

ϕdn dV = 0 (3.12)

And for eq.(3.7) of displacement, we don’t have any previous time dependency. So writing it for
current time, we have

−
∫
B

∇Φ : ((1− d)2 + k)σ+ dV −
∫
B

∇Φ : σ− dV = 0 (3.13)

Now we can continue with the spatial discretization of (3.12) and (3.13).

3.2.2 Spatial discretization

The FEM defines continuous, piecewise-polynomial shape functions Ni at node xj such that

Ni(xj) = δij ∀ i, j ∈ {1, ..., nen} and δij =

{
1, if i = j,

0, if i 6= j.

where nen is the total number of nodes in the triangulation. Now to derive the discrete weak
formulation of phase field, the approximations of it’s test function (ϕ) and gradient (∇ϕ) are
introduced as

ϕe =

nen∑
i=1

Niϕi

∇ϕe =

nen∑
i=1

ϕi∇Ni

(3.14)
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to obtain
nel∧
e=1

ϕi

[
Gc
l

∫
Be

Nid dV +Gcl

∫
Be
∇Ni · ∇d dV − 2

∫
Be

Ni(1− d)H dV

+
η

∆t

∫
Be

Nid dV − η

∆t

∫
Be

Nidn dV

]
= 0

(3.15)

where the summation signs have been omitted for clearer notation, but summation over the index
i is assumed. Also since this equation has to be satisfied for arbitrary nodal values of the test
function (ϕi), it has been moved out of the brackets.

The terms of the equation can be summarized to obtain the following scalar valued residual
equation

[rd]I = [fd]
int
I − [fd]

ext
I = 0 ∀I = 1, 2.., nen (3.16)

with

[fd]
int
I =

nel∧
e=1

[
Gc
l

∫
Be

Nid dV +Gcl

∫
Be
∇Ni · ∇d dV − 2

∫
Be

Ni(1− d)H dV

+
η

∆t

∫
Be

Nid dV − η

∆t

∫
Be

Nidn dV

]
[fd]

ext
I = 0

(3.17)

Here, rd denotes the residual. And the assembly operator
nel∧
e=1

ensures that the contributions of

element nodes (index i) are assigned to the appropriate global nodes (upper-case index I). Other
important thing to note here is that the non-linear terms in the internal force(if present) need
to be linearized first.

Similarly for displacement, approximation of its test function Φ and its gradient ∇Φ in terms of
basis functions gives us

Φe =

ndofu∑
i=1

ΦiN̂i

∇Φe =

ndofu∑
i=1

Φi∇N̂i

(3.18)

where ndofu is the total number of degrees of freedom for displacement. N̂i is vector valued
basis function. Inserting these in eq.(3.7), we obtain

nel∧
e=1

Φi ·
[
−
∫
Be
∇N̂i(1− d)2 : σ+dV − k

∫
Be
∇N̂i : σ+dV −

∫
Be
∇N̂i : σ−dV

]
= 0 (3.19)

where as described before, the summation signs have been omitted for clearer notation but
summation over the index i is implied. Also since this equation has to be valid for arbitrary
nodal values of the test function (Φi), it has been moved out of the brackets.

Terms of the equation can be summarized to obtain the following vector-valued equation of
equilibrium

[ru]I = [fu]intI − [fu]extI = 0 ∀I = 1, 2.., ndofu (3.20)
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with

[fu]intI =

nel∧
e=1

[
−
∫
Be
∇N̂i(1− d)2 : σ+dV − k

∫
Be
∇N̂i : σ+dV −

∫
Be
∇N̂i : σ−dV

]
[fu]extI = 0

(3.21)

where ru,f
int
u and f extu are vector quantities. The residual equation in displacement case becomes

[ru]I(u, d) =

nel∧
e=1

[
−
∫
Be
∇N̂i(1− d)2 : σ+dV − k

∫
Be
∇N̂i : σ+dV −

∫
Be
∇N̂i : σ−dV

]
(3.22)

Important thing to note here is that the non-linear terms in the residual equation needs to be
linearized first. We will give a brief introduction to linearization and then use its results.

Introduction to linearization

Considering the example of a scalar valued function f(x) of a single variable x, the Taylor
expansion around the point x̄ takes the form:

Tf (x) = f(x̄) +
1

1!

∂f

∂x

∣∣∣
x=x̄

[x− x̄] +
1

2!

∂2f

∂x2

∣∣∣
x=x̄

[x− x̄]2 + ...+
1

n!

∂nf

∂xn

∣∣∣
x=x̄

[x− x̄]n

Linear approximation to f(x) reads as

L[f(x)] = f(x̄) +
∂f(x)

∂x

∣∣∣
x=x̄

[x− x̄] (3.23)

Linearization at x = x̄ or the linearised change in the function value (G) is calculated as

G[f(x̄)] = L[f(x)]− f(x̄) =
∂f(x)

∂x

∣∣∣
x=x̄

∆x (3.24)

These results can be extended for the case of multi-variable functions also. Taking f(x) = f(x ),
with x ∈ Rdim, its linearization is given as

G[f(x̄ )] =
∂f(x )

∂x

∣∣∣
x=x̄
·∆x =

d

dε
(f(x̄ + ε∆x ))

∣∣∣
ε→0

(3.25)

where ε is a scalar parameter. This directional derivative measures the incremental change of
the function value f at the given point x̄ when there is a small change in the value of x .

Similarly for a system of two variables, linear approximation to f(x, y) at point (x̄, ȳ) can be
written as

L[f(x, y)] = f(x̄, ȳ) +
∂f(x, y)

∂x

∣∣∣
x=x̄
·∆x+

∂f(x, y)

∂y

∣∣∣
y=ȳ

∆y (3.26)

Here the variable x is a vector and y is scalar quantity. And we will have similar formulation for
every case. Linearization in this case becomes

G[f(x̄, ȳ)] = L[f(x, y)]− f(x̄, ȳ) =
∂f(x, y)

∂x

∣∣∣
x=x̄
·∆x+

∂f(x, y)

∂y

∣∣∣
y=ȳ

∆y (3.27)

For corresponding parts of x and y, we can write

G[f(x̄, ȳ)]x =
∂f(x, y)

∂x

∣∣∣
x=x̄
·∆x
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G[f(x̄, ȳ)]y =
∂f(x, y)

∂y

∣∣∣
y=ȳ

∆y

Using above two expressions we get

L[f(x, y)] = f(x̄, ȳ) + G[f(x̄, ȳ)]x + G[f(x̄, ȳ)]y (3.28)

In our work, we are more interested in the residual r(u, d) of the equations with an approximate
solution (ū, d̄).

L[r(u, d)] = r(ū, d̄) + G[r(ū, d̄)]u + G[r(ū, d̄)]d (3.29)

Linearization in phase field equation

In case of Phase-field, as shown earlier in eq.(3.16) and eq.(3.17), the residual is

[rd]I(d) =

nel∧
e=1

[
Gc
l

∫
Be

Nid dV +Gcl

∫
Be
∇Ni · ∇d dV − 2

∫
Be

Ni(1− d)H dV

+
η

∆t

∫
Be

Nid dV − η

∆t

∫
Be

Nidn dV

] (3.30)

Calculating the linearization w.r.t phase-field for the residual equation gives

G[[rd]I(d)]d =

nel∧
e=1

[
Gc
l

∫
Be

NiG[d]ddV +Gcl

∫
Be
∇Ni ·G[∇d]ddV − 2

∫
Be

NiG[(1− d)]dHdV

+
η

∆t

∫
Be

NiG[d]ddV − η

∆t

∫
Be

NiG[dn]ddV

] (3.31)

In order to proceed further, we first need to compute expressions of the form,

G[d]d =
∂[d]

∂d

∣∣∣
d=d̄

∆d = ∆d (3.32)

G[∇d]d =
∂[∇d]

∂d

∣∣∣
d=d̄
·∆d = ∇∆d (3.33)

using the above computed expressions we get

G[[rd]I(d)]d =

nel∧
e=1

[
Gc
l

∫
Be

Ni∆d dV +Gcl

∫
Be
∇Ni · ∇∆d dV + 2

∫
Be

Ni∆dH dV

+
η

∆t

∫
Be

Ni∆d dV − 0

] (3.34)
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Note that since the last term of the eq.(3.31) is already known, its linearization is zero. Using
the shape functions to approximate the solution update ∆d, we obtain

G[[rd]I(d)]d =

nel∧
e=1

[
Gc
l

∫
Be

Ni

[
Nj∆dj

]
dV +Gcl

∫
Be
∇Ni ·

[
∇Nj∆dj

]
dV + 2

∫
Be

Ni

[
Nj∆dj

]
H dV

+
η

∆t

∫
Be

Ni

[
Nj∆dj

]
dV

]

=

nel∧
e=1

[
Gc
l

∫
Be

NiNjdV +Gcl

∫
Be
∇Ni · ∇NjdV + 2

∫
Be

NiNjH dV

+
η

∆t

∫
Be

NiNjdV

]
·∆dJ

(3.35)

G[[rd]I(d)]d =

nel∧
e=1

[
Gc
l

∫
Be

NiNjdV +Gcl

∫
Be
∇Ni · ∇NjdV + 2

∫
Be

NiNjHdV +
η

∆t

∫
Be

NiNjdV

]
︸ ︷︷ ︸

Kdd
IJ

·∆dJ

(3.36)
G[[rd]I(d)]d = Kdd

IJ ·∆dJ (3.37)

where Kdd is the stiffness matrix as defined in eq.(3.36). Now we have to find the other part of
eq.(3.29), which is G[rd(ū, d̄)]u. But the eq.(3.29) is not dependent on displacement term so the
linearization with respect to displacement just gives us zero. That is

G[[rd]I(d)]u = 0 (3.38)

Note that although History function is dependent on displacement, but the dependency is on un
and thus the linearization is zero.

Linearization in displacement equation

Linearization with respect to phase-field gives us zero as second and third term in the eq.(3.22)
doesn’t depends on phase-field at all. And for the first term, phase-field has already been
calculated so it acts as a constant here. So we get

G[[ru]I(u, d)]d = 0 (3.39)

Now the task is to find G[[ru]I(u, d)]u. The expression we have is

G[[ru]I(u, d)]u =

nel∧
e=1

[
−
∫
Be
∇N̂i(1−d)2 : G[σ+]udV−k

∫
Be
∇N̂i : G[σ+]udV−

∫
Be
∇N̂i : G[σ−]udV

]
(3.40)

So we need to find G[σ+]u and G[σ−]u in order to move forward.

22



Linearization of σ+

In order to find G[σ+], we will write it in the form of elasticity tensor.

G[σ+]u =
∂σ+

∂ε
: G[ε] =

∂σ+

∂ε+
:
∂ε+

∂ε
: G[ε]u

= C+ : G[ε]u

where C+ is defined as the 4th order positive elasticity tensor.

So now the task of finding G[σ+]u is reduced to getting an expression for C+. Our main strategy
will be to compute σ̇+ and ε̇ (time derivatives) and compare rate form of relation σ̇+ = C+ : ε̇
to obtain C+. We start from the spectral decomposition of ε

ε =

3∑
a=1

λaNa ⊗Na

where λa is the eigenvalue of strain and Na is its eigenvector. Using the results shown in Appendix
B, we get the expression for ε̇ as

ε̇ =
3∑

a=1

λ̇aNa ⊗Na +
3∑

a=1

3∑
b=1
b6=a

Ωab(λb − λa) Na ⊗Nb (3.41)

where λ̇a is the time derivative of eigenvalue λa and Ωab are the components of the skew tensor
Ω with respect to the basis vectors {ea} with a=1,2,3.

By isotropy, σ+ has the same principal directions as ε. Hence we can write the spectral decom-
position for it as

σ+ =

3∑
a=1

σ+
a Na ⊗Na

where σ+
a is the eigenvalue for positive stress σ+. By analogy with (3.41) we obtain

σ̇+ =
3∑

a=1

σ̇+
a Na ⊗Na +

3∑
a=1

3∑
b=1
b6=a

Ωab(σ
+
b − σ+

a ) Na ⊗Nb (3.42)

where σ̇+
a =

3∑
b=1

∂σ+
a

∂λb
λ̇b, with λb being the eigenvalue of ε.

Comparing the derived equations (3.41) and (3.42) in the rate form σ̇+ = C+ : ε̇, we find by
inspection that the elasticity tensor C+ looks like

C+ =

3∑
a,b=1

∂σ+
a

∂λb
Na ⊗Na ⊗Nb ⊗Nb

+
1

2

3∑
a,b=1
a6=b

σ+
b − σ+

a

λb − λa
( Na ⊗Nb ⊗Na ⊗Nb + Na ⊗Nb ⊗Nb ⊗Na)

(3.43)
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Proof of this is provided in Appendix C.1. In the above expression, eigenvalues of strain (λa, λb)

and positive stress (σ+
a , σ

+
b ) are known but the expression

∂σ+
a

∂λb
is unknown. We will use the

relation provided in eq.(2.38) to find its value as

σ+ = λ〈tr[ε]〉+1 + 2µε+

=
3∑

a=1

λ〈tr[ε]〉+Na ⊗Na + 2µ
3∑

a=1

〈λa〉+Na ⊗Na

=
3∑

a=1

(λ〈tr[ε]〉+ + 2µ〈λa〉+)︸ ︷︷ ︸
σ+
a

Na ⊗Na

=
3∑

a=1

σ+
a Na ⊗Na

(3.44)

Before we find the expression for
∂σ+

a

∂λb
, we need to know some results like

∂λa
∂λb

= δab

∂(tr[ε])

∂λb
=
∂(
∑

a λa)

∂λb
= 1

∂|tr[ε]|
∂λb

=
∂|tr[ε]|
∂(tr[ε])

∂(tr[ε])

∂λb
=
∂|tr[ε]|
∂(tr[ε])

(3.45)

Now we can find the expression using above results.

∂σ+
a

∂λb
= λ

∂

∂λb

[
tr[ε] + |tr[ε]|

2

]
+ 2µ

∂

∂λb

[
λa + |λa|

2

]
=
λ

2

[
1 +

∂|tr[ε]|
∂(tr[ε])

]
+ µ

[
1 +

∂|λa|
∂λa

]
δab

(3.46)

Linearization of σ−

We will follow the same technique here as in the case of σ+. We will write G[σ−] in the form of
elasticity tensor.

G[σ−] =
∂σ−

∂ε
: G[ε] =

∂σ−

∂ε−
:
∂ε−

∂ε
: G[ε]

= C− : G[ε]

where C− is defined as the 4th order negative elasticity tensor.

The time derivative for strain is same as calculated in eq.(3.41). And as in eq.(3.42), we have
similar expression for σ̇−.

σ̇− =

3∑
a=1

σ̇−a Na ⊗Na +

3∑
a=1

3∑
b=1
b6=a

Ωab(σ
−
b − σ−a ) Na ⊗Nb (3.47)

where σ̇−a =

3∑
b=1

∂σ−a
∂λb

λ̇b, with λb being the eigenvalue of ε.
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As in case of C+, we found the expression of C− by inspection, proof of which is given in Appendix
C.2.

C− =

3∑
a,b=1

∂σ−a
∂λb

Na ⊗Na ⊗Nb ⊗Nb

+
1

2

3∑
a,b=1
a6=b

σ−b − σ−a
λb − λa

( Na ⊗Nb ⊗Na ⊗Nb + Na ⊗Nb ⊗Nb ⊗Na)

(3.48)

Expression
∂σ−a
∂λb

is unknown and needs to be find out. Again using the result in eq.(2.39), we

obtain
σ− = λ〈tr[ε]〉−1 + 2µε−

=
3∑

a=1

λ〈tr[ε]〉−Na ⊗Na + 2µ
3∑

a=1

〈λa〉−Na ⊗Na

=
3∑

a=1

(λ〈tr[ε]〉− + 2µ〈λa〉−)︸ ︷︷ ︸
σ−a

Na ⊗Na

=
3∑

a=1

σ−a Na ⊗Na

(3.49)

Using the results of eq.(3.45), we can calculate expression for
∂σ−a
∂λb

.

∂σ−a
∂λb

= λ
∂

∂λb

[
tr[ε]− |tr[ε]|

2

]
+ 2µ

∂

∂λb

[
λa − |λa|

2

]
=
λ

2

[
1− ∂|tr[ε]|

∂(tr[ε])

]
+ µ

[
1− ∂|λa|

∂λa

]
δab

(3.50)

Now we will go back to eq.(3.40), where we were supposed to find linearization with respect to
displacement.

G[[ru]I(u, d)]u =

nel∧
e=1

[
−
∫
Be
∇N̂i(1−d)2 : G[σ+]udV−k

∫
Be
∇N̂i : G[σ+]udV−

∫
Be
∇N̂i : G[σ−]udV

]
(3.51)

Since now we have expressions of C+ and C−, we can find G[σ+]u and G[σ−]u as

G[σ+]u = C+ : G[ε]u

G[σ−]u = C− : G[ε]u

Solving for G[ε]u gives

G[ε]u =
∂
[∇u+∇Tu

2

]
∂u

∣∣∣
u=ū
·∆u =

1

2

[
∇(∆u) +∇T(∆u)

]
(3.52)
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Putting the above results in eq.(3.40) gives

G[[ru]I(u, d)]u =

nel∧
e=1

[
−
∫
Be
∇N̂i(1− d)2 : C+ : G[ε]udV − k

∫
Be
∇N̂i : C+ : G[ε]udV

−
∫
Be
∇N̂i : C− : G[ε]udV

]

=

nel∧
e=1

[
− 1

2

∫
Be
∇N̂i(1− d)2 : C+ :

[
∇(∆u) +∇T(∆u)

]
dV

− k

2

∫
Be
∇N̂i : C+ :

[
∇(∆u) +∇T(∆u)

]
dV − 1

2

∫
Be
∇N̂i : C− :

[
∇(∆u) +∇T(∆u)

]
dV

]
(3.53)

Using the basis function to approximate the update solution ∆u gives us

G[[ru]I(u, d)]u =

nel∧
e=1

[
− 1

2

∫
Be
∇N̂i(1− d)2 : C+ :

[
∇N̂j ·∆uj +∇TN̂j ·∆uj

]
dV

− k

2

∫
Be
∇N̂i : C+ :

[
∇N̂j ·∆uj +∇TN̂j ·∆uj

]
dV

− 1

2

∫
Be
∇N̂i : C− :

[
∇N̂j ·∆uj +∇TN̂j ·∆uj

]
dV

]

=

nel∧
e=1

[
− 1

2

∫
Be
∇N̂i(1− d)2 : C+ :

[
∇N̂j +∇TN̂j

]
dV

− k

2

∫
Be
∇N̂i : C+ :

[
∇N̂j +∇TN̂j

]
dV

− 1

2

∫
Be
∇N̂i : C− :

[
∇N̂j +∇TN̂j

]
dV

]
·∆uJ

= Kuu
IJ ·∆uJ

(3.54)

where Kuu is the stiffness matrix.

3.2.3 Newton-Raphson scheme

Although the equation for phase-field is linear here but we will still apply iterative solution scheme
like Newton-Raphson in order to generalize the solution strategy irrespective of linearity and to
introduce the method for non-linear equation of displacement. Let (u0, d0) be an approximate
solution. In Newton-Raphson method, an improvement to this is iteratively computed by setting
linear approximation of the residual (L[[rd]I(d)]) to zero, i.e.

L[[rd]I(d)] = [rd]I(d
0) + G[[rd]I(d

0)]u + G[[rd]I(d
0)]d = 0

using results in eq.(3.37) and eq.(3.38), we get

[rd]I(d
0) + Kdd

IJ ·∆dJ + 0 = 0

or
Kdd ·∆d = −rd(d0) (3.55)
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which is the System of Linear Equations (SLE) to be solved in each newton iteration. Once the
update ∆d is determined by solving the SLE (3.55), the improved solution is computed as

d1 = d0 + ∆d (3.56)

although in this case solution will converge in one iteration only as equation is linear. In case of
non-linear equation, this iterative process is continued until a convergence is achieved. Criteria
for convergence is generally based on norm of the residual being a prescribed tolerance. And
once we get a value for the phase-field, we will use it for solving displacement.

Now that we have find solution for d for the current time step, we will solve for u. We set the
linear approximation of the residual for u (L[[ru]I(u, d)]) to zero

L[[ru]I(u, d)] = [ru]I(u
0, d) + G[[ru]I(u

0, d)]u + G[[ru]I(u
0, d)]d = 0

using results in eq.(3.54) and eq.(3.39), we obtain

[ru]I(u
0, d) + Kuu

IJ ·∆uJ + 0 = 0

or
Kuu ·∆u = −ru(u0, d) (3.57)

which is the SLE to be solved in each newton iteration. And once the update ∆u is calculated,
the improved solution is computed as

u1 = u0 + ∆u (3.58)

and this iterative process is continued until a convergence criteria is fulfilled. And once we have
a solution for displacement, we increment our time loop. The complete procedure is summarized
in Algorithm 1.

3.3 Implementation

The algorithm presented above has been implemented within a finite element code written in
C++, based on open source library deal.II [1]. It supports parallel computing with multiple
processors accessing shared memory. The code is capable to solve problems involving phase field
formulation based on Miehe model (see section 2.3.1). Also, the code uses template based design
of deal.II which makes it independent of dimension being used for the problem. For solving SLE
in each Newton iteration of phase-field, the conjugate gradient (CG) solver available through
the class dealii::SolverCG has been used. Similarly for displacement the sparse direct solver
UMFPACK has been used which is available through the class dealii::SparseDirectUMFPACK.
The choice of solver is not that crucial here as the major computational time is spent in the
assembly process. That is the reason for parallelizing the assembly part utilizing the fact that
deal.II supports operations running in parallel on shared-memory(SMP) machines. Input meshes
have been generated in ABAQUS and the visualization has been performed in PARAVIEW.
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Algorithm 1: Alternate minimization scheme

while t < tend do
Initialization, k1 = 0
Inputd : d0 = dn (n→ previous time step)

while ||rk1d || > tol1 do
Solve Kdd ·∆dk1+1 =
−rd(dk1) similar to (3.55)

dk1+1 = dk1 + ∆dk1+1

k1 ← k1 + 1
end
Outputd : dn+1 (n+ 1→ current time step)
Initialization, k2 = 0
Inputu : dn+1,u

0 = un
while ||rk2u || > tol2 do

Solve Kuu ·∆uk2+1 =
−ru(uk2 , dn+1) similar to (3.57)

uk2+1 = uk2 + ∆uk2+1

k2 ← k2 + 1
end
Outputu : un+1

t← t+ ∆t
end
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Chapter 4

Numerical Examples

In this chapter, we present some standard benchmark problems like single edge notched tension
(SENT) test and single edge notched shear (SENS) test [20] in a quasi-static setting for plane
strain conditions to demonstrate the modeling capability of the alternate minimization scheme
described in Algorithm 1.

In the first section of this chapter, we will verify our implementation for mesh induced crack
(MI)(see section 2.4) for SENT and SENS tests for various boundary conditions by comparing
our results with those of Miehe et al.[20]. In the second section, effect of changing the viscosity
is presented for SENT and SENS tests with same strategy of mesh induced crack (MI). It will
be followed by comparison of three modeling strategies for the pre-existing crack for SENT test.
In the last section, we will present a comparison of our phase field results with LEFM mode I
loading.

During the verification of our results in the first section, for the case of SENT test, three boundary
conditions will be discussed and the one with most promising results will be selected and used
for other scenarios as well. In all cases, in y-direction, the bottom boundary is fixed and on top
a prescribed load is applied. All other boundaries including crack are traction free.

• uxbfxd− uxtfxd: It denotes the case where both bottom and top boundaries are fixed in
x-direction as shown in Fig. 4.1(a).

• uxbfree− uxtfxd: Here, the bottom boundary is free but top is fixed in x-direction as
shown in Fig. 4.1(b).

• uxbfxd− uxtfree: In this case, bottom is fixed and top is free in x-direction as shown in
Fig. 4.1(c).

The material data have been taken from [20] and are listed as

λ = 121.15 kN/mm2

µ = 80.77 kN/mm2

Gc = 2.7× 10−3 kN/mm

(4.1)
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(c) uxbfxd− uxtfree

Figure 4.1: Single edge notched tension test with geometry and various boundary conditions for
MI .

4.1 Results verification

For the mesh induced crack (MI), we will present our phase field solutions for SENT and SENS
cases and compare them with Miehe et al.[20] for the cases of η = 0 kNs/mm2 (denoted as ref.
sol. η = 0) and η = 1 × 10−6 kNs/mm2 (denoted as ref. sol. η = 1 × 10−6) for regularization
lengths l = 0.015 mm and l = 0.0075 mm.

4.1.1 Single edge notched tension test

Consider a two dimensional square plate of side 1mm with a pre-existing crack as shown in
Fig. 4.1 with three boundary conditions. The material parameters are stated in eq.(4.1). We
have refined the area of the mesh where crack is expected to grow. The element size in that
critical zone is h ≈ 0.001 mm with the total DOF being 131,895. Following a displacement
control method, for the first 500 time steps a constant displacement increment of ∆u = 1× 10−5

mm is used. After that, increment is reduced to ∆u = 1 × 10−6 mm in order to accommodate
the brutal nature of the crack propagation. In the literature, we can find different boundary
conditions being applied to the plate but influence of these is hardly discussed. So in the next
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sections, we will have different cases for these boundary conditions and we will see the variation
in the load-displacement curve from standard results for each case.

Fixed at bottom and top (uxbfxd− uxtfxd)

In this scenario, on the bottom boundary we have homogeneous Dirichlet conditions (ux =
uy = 0 mm), where ux and uy are displacements in x and y directions respectively. On the top
boundary, we prescribe ux = 0 mm and uy as provided in (4.2).

uy = lr × utotal (4.2)

where lr is the load ratio and is defined as lr = ∆t
ttotal

, with ttotal being the total time. utotal
is the total displacement applied on the specimen. utotal and ttotal are taken to be equal to
each other giving us a ∆t increment in each time step. The crack growth is driven by this non-
homogeneous Dirichlet condition of uy. All other boundaries are traction free (homogeneous
Neumann conditions) including the crack slit. The geometry and boundary conditions can also
be seen in Fig. 4.1(a). The regularization length and viscosity are two major factors which affect
the numerical implementations. In Fig. 4.2 and Fig. 4.3, we can see the influence of viscosity on
fixed regularization lengths of l = 0.015 mm and l = 0.0075 mm along with the deviation from
the reference results for each case.

For both cases of l, we can observe that viscous model smoothes out the brutal crack propagation
as compared to rate-independent case η = 0 kNs/mm2, which has a much steeper descent. The
parameter of viscosity has a kind of stabilizing effect on the problem. And with these boundary
conditions, we can see large deviations in the time of crack nucleation. Crack is initiated earlier
than expected and it takes a higher force to reach that stage.

Observing so much deviation from the reference results for both cases of regularization lengths,
we can say that these boundary conditions are not well suited to be taken into consideration.
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Figure 4.2: Single edge notched tension test (MI). Load-displacement curve for l = 0.015 mm
obtained for η = 1× 10−6 kNs/mm2 and η = 0 kNs/mm2 with uxbfxd− uxtfxd.

31



0 1 2 3 4 5 6

·10−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Displacement [mm]

L
o
ad

[k
N
]

ref. sol. η = 0

ref. sol. η = 1× 10−6

η = 0

η = 1× 10−6

Figure 4.3: Single edge notched tension test (MI). Load-displacement curve for l = 0.0075 mm
obtained for η = 1× 10−6 kNs/mm2 and η = 0 kNs/mm2 with uxbfxd− uxtfxd.

Free at bottom and fixed at top (uxbfree− uxtfxd)

In this case, on the top boundary we have a condition of ux = 0 mm and uy as given in eq.(4.2).
Whereas at the bottom boundary, we prescribe uy = 0 mm and it is traction free in x-direction.
All other boundaries including slit are traction free. Same is shown in the Fig. 4.1(b).
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Figure 4.4: Single edge notched tension test (MI). Load-displacement curve for l = 0.015 mm
obtained for η = 1× 10−6 kNs/mm2 and η = 0 kNs/mm2 with uxbfree− uxtfxd.

Influence of the viscosity on two regularization lengths l = 0.015 mm and l = 0.0075 mm can be
seen in Fig. 4.4 and Fig. 4.5 along with comparison with our reference solution. For both cases
of regularization length, viscosity has the same effect of smoothening out the crack propagation
as expected. In terms of comparison with our reference solution, the crack initiation is starting
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at almost same time but the maximum force required is a bit higher than expected. Although
these boundary conditions gives us a promising result but still we can’t exactly match them with
our reference solution on each criteria. We will continue with our next boundary conditions and
see if we can find results that are in more good agreement with our reference solution.
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Figure 4.5: Single edge notched tension test (MI). Load-displacement curve for l = 0.0075 mm
obtained for η = 1× 10−6 kNs/mm2 and η = 0 kNs/mm2 with uxbfree− uxtfxd.

Fixed at bottom and free at top (uxbfxd− uxtfree)

In this case, at the top boundary we have traction free conditions in the x-direction and uy is as
provided in eq.(4.2). At the bottom boundary, we use ux = uy = 0 mm. All other boundaries
including slit are again traction free. Fig. 4.1(c) depicts the same.
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Figure 4.6: Single edge notched tension test (MI). Load-displacement curve for l = 0.015 mm
obtained for η = 1× 10−6 kNs/mm2 and η = 0 kNs/mm2 with uxbfxd− uxtfree.
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Fig. 4.6 and Fig. 4.7 shows the effect of viscosity on regularization lengths l = 0.015 mm and
l = 0.0075 mm. As expected, the viscosity smoothes out the brutal crack propagation in both
cases of regularization lengths. If we compare these results with our reference solutions, we find
a very good match between them. Crack initiation is happening at exactly the same time as that
in our reference solution and also the maximum force is matching for both cases of regularization
lengths.
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Figure 4.7: Single edge notched tension test (MI). Load-displacement curve for l = 0.0075 mm
obtained for η = 1× 10−6 kNs/mm2 and η = 0 kNs/mm2 with uxbfxd− uxtfree.

Since these boundary conditions results are in good agreement with our reference solutions, we
will take these as a standard for our future work. So if not mentioned explicitly, uxbfxd− uxtfree
should be taken as the boundary conditions.

Comparison of different boundary conditions

Comparison of our results for different boundary conditions with the reference solution for a
particular case of viscosity η = 1 × 10−6 kNs/mm2 and both regularization lengths l = 0.015
mm and l = 0.0075 mm are shown in Fig. 4.8 and Fig. 4.9. Earlier, we have compared different
boundary conditions results with the reference solution. Here we want to do the comparison
between each boundary condition. For both cases of regularization length, we can see that
uxbfxd− uxtfxd gives very different results from other boundary conditions, both in terms of
time of crack initiation and in terms of maximum force. And comparing it with reference results,
we can say that this boundary condition is not a preferred one. uxbfree− uxtfxd has very similar
results when compared with uxbfxd− uxtfree, but is less accurate in terms of the maximum
force. uxbfxd− uxtfree gives us the most accurate results.
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Figure 4.8: Single edge notched tension test (MI). Comparison of the load-displacement curve
for different boundary conditions with regularization length l = 0.015 mm and viscosity η =
1× 10−6 kNs/mm2.
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Figure 4.9: Single edge notched tension test (MI). Comparison of the load-displacement curve
for different boundary conditions with regularization length l = 0.0075 mm and viscosity η =
1× 10−6 kNs/mm2.

Crack pattern variation with l

The resulting crack patterns at different displacements for both regularization lengths can be
seen in Fig. 4.10. The illustration uses the viscous model with η = 1 × 10−6 kNs/mm2. It does
not show the brutal crack evolution of the rate-independent problem. Sharpest crack pattern is
observed for regularization length l = 0.0075 mm as expected.
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Figure 4.10: Single edge notched tension test (MI). Crack patterns for η = 1× 10−6 kNs/mm2

at different displacements for each regularization length.

If we observe carefully Fig. 4.10(a) and Fig. 4.10(d) as well as Fig. 4.10(b) and Fig. 4.10(e), we can
see that for the same displacement, crack propagation is at different stages for both regularization
lengths. As can be seen from Fig. 4.11 also, the crack initiation starts at almost same time for
both cases of l but the crack propagates slowly for l = 0.0075 mm.
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Figure 4.11: Single edge notched tension test (MI). Load-displacement curve for η = 1 ×
10−6 kNs/mm2 mm obtained for l = 0.015 mm and l = 0.0075 mm with uxbfxd− uxtfree.

It can be said that decreasing the regularization length leads to increase in total displacement
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required for the crack to propagate through the whole body. Our observation is supported by
Fig. 4.10(c) and Fig. 4.10(f), which shows the displacement values for both l when the crack has
fully propagated through the whole body.

Energies in the system

As can be recalled from Griffith’s criteria, fracture and elastic energy are the main parameters
to be taken into consideration while observing the crack initiation process so we will focus on
these energies in our work. As shown in Fig. 4.12, the elastic strain energy of the body keeps
on increasing until the crack initiates and there is a sudden drop in it once the crack starts
propagating. On the other hand, the fracture energy sees a sudden jump when the crack starts
propagating. Such a peculiar feature of these two energies at crack initiation will be utilized to
compare our results with that of LEFM in section 4.4.
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Figure 4.12: Energy-displacement curve for elastic and fracture energy with regularization length
l = 0.0075 mm and η = 1× 10−6 kNs/mm2

4.1.2 Single edge notched shear test

We will now study the case for shear loading. Geometry and boundary conditions are depicted
in Fig. 4.13. Note that the pre-existing crack here is modeled as a mesh induced one (MI). On
the left and right boundaries, we prescribe uy = 0 mm and plate is traction free in x-direction.
On bottom boundary, we use ux = uy = 0 mm and on the top, we prescribe uy = 0 mm and ux
as stated in eq.(4.3).

ux = lr × utotal (4.3)

where lr and utotal are same as stated in eq.(4.2).

We have refined the area where crack growth is expected. The element size in this critical zone
is h ≈ 0.002 mm with total DOF being 112,293. The whole simulation is performed with a
constant displacement increment of ∆u = 1 × 10−5 mm. The material parameters are same as
stated in eq.(4.1). We will take Miehe et al.[20] shear results as the reference solution for the
case of η = 0 kNs/mm2 (denoted as ref.sol. η = 0) and η = 1× 10−6 kNs/mm2 (denoted as ref.
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Figure 4.13: Geometry and boundary conditions for single edge notched shear test (MI).

sol. η = 1 × 10−6) for regularization lengths of 0.015 mm and 0.0075 mm. Fig. 4.14 and Fig.
4.15 shows for both regularization lengths the comparison of our results with reference solutions
for the cases of viscosity η = 0 kNs/mm2 and η = 1× 10−6 kNs/mm2.

For both cases of regularization length, we can observe that our results for η = 0 kNs/mm2 and
η = 1 × 10−6 kNs/mm2 are in good agreement with reference solutions. Viscosity introduction
has the usual effect of smoothening out the brutal crack propagation in the specimen. We study
the load displacement curve until the point when crack reaches the boundary of the specimen.
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Figure 4.14: Single edge notched shear test (MI). Load-displacement curve for regularization
length l = 0.015 mm obtained for η = 1× 10−6 kNs/mm2 and η = 0 kNs/mm2.
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Figure 4.15: Single edge notched shear test (MI). Load-displacement curve for regularization
length l = 0.0075 mm obtained for η = 1× 10−6 kNs/mm2 and η = 0 kNs/mm2.

Crack pattern variation with l

The resulting crack patterns at different stages for the regularization lengths can be seen in Fig.
4.16. We have taken viscosity as η = 1 × 10−6 kNs/mm2. And as expected, the regularization
length l = 0.0075 mm has the sharpest crack pattern.
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Figure 4.16: Single edge notched shear test (MI). Crack patterns for η = 1× 10−6 kNs/mm2 at
different displacements for each regularization length.
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For the same displacements of u = 9.0 × 10−3 mm (Fig. 4.16(a) and Fig. 4.16(d)) and u =
11.0 × 10−3 mm (Fig. 4.16(b) and Fig. 4.16(e)), we can observe that crack propagation is at
different stages. Although crack initiation occurs at almost same time for both regularization
lengths as can be seen from Fig. 4.17, the smaller l slows down the crack propagation speed in
the material. It is difficult to accurately point out the total displacement required for the crack
to propagate through the whole body but for a same displacement of u = 13.5× 10−3 mm, one
can see from Fig. 4.16(c) (l = 0.015 mm) that the crack has fully propagated through whole body
while Fig. 4.16(f) for l = 0.0075 mm shows that crack has still not reached the boundary.
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Figure 4.17: Single edge notched shear test (MI). Load-displacement curve for η = 1 ×
10−6 kNs/mm2 mm obtained for l = 0.015 mm and l = 0.0075 mm.

Energies in the system

As shown in Fig. 4.18, there is a sudden increase in the fracture energy of the system when the
crack initiates. Although it is difficult to say so for the elastic energy but still a small change in
slope of its curve is seen around the initiation point.
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Figure 4.18: Energy-displacement curve for elastic and fracture energy with regularization length
l = 0.0075 mm and η = 1× 10−6 kNs/mm2

4.2 Effect of viscosity

The viscosity is a numerical parameter to model artificial stiffness in the material and is intro-
duced to stabilize the numerical implementation. Earlier we have seen the effect of viscosity
η = 1 × 10−6 kNs/mm2 on our problem but we would like to see the behavior of the system
for larger values of viscosity. Two more values are chosen to study their influence on the crack
propagation behavior. Both regularization lengths are studied, with the viscosity being varied
as 0 kNs/mm2, 1×10−6 kNs/mm2, 1×10−5 kNs/mm2 and 0.5×10−4 kNs/mm2. We will present
the case for both SENT and SENS tests.

4.2.1 Single edge notched tension test

Fig. 4.19 shows the influence for regularization length l = 0.015 mm and similarly Fig. 4.20 for
l = 0.0075 mm.

For both cases of l, we can observe that increase in viscosity leads to a delay in the crack
initiation process along with increase in the maximum attainable force. Other than that, the total
displacement required for the crack to propagate through the whole body is getting significantly
larger with slight increase in viscosity as can be seen in the case of η = 0.5 × 10−4 kNs/mm2.
Viscosity is introduced in the system to stabilize the numerical treatment of our problem but it
should be as small as possible otherwise large deviations can be observed from rate independent
case.
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Figure 4.19: Single edge notched tension test (MI). Load-displacement curve for regularization
length l = 0.015 mm showing the effect of different viscosities.
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Figure 4.20: Single edge notched tension test (MI). Load-displacement curve for regularization
length l = 0.0075 mm showing the effect of different viscosities.

4.2.2 Single edge notched shear test

As in the case of tension test, here also two more viscosities are chosen to study their influence
on the crack propagation behavior. Both regularization lengths are studied with the viscosity
being varied as 0 kNs/mm2, 1 × 10−6 kNs/mm2, 1 × 10−5 kNs/mm2 and 0.5 × 10−4 kNs/mm2.
Fig. 4.21 shows the influence for regularization length l = 0.015 mm and similarly Fig. 4.22 for
l = 0.0075 mm.

42



0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

·10−2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Displacement [mm]

L
o
ad

[k
N
]

η = 0

η = 1× 10−6

η = 1× 10−5

η = 0.5× 10−4

Figure 4.21: Single edge notched shear test (MI). Load-displacement curve for regularization
length l = 0.015 mm showing the effect of different viscosities.

For case of l = 0.015 mm, we can clearly see the delay in crack initiation and increase in the
maximum attainable force with increasing values of viscosity. Crack growth rate in the post
critical stage is decreasing with increase in viscosity. For l = 0.0075 mm, maximum attainable
force has clearly increased but the delay in crack initiation is not so significant as it was in case of
l = 0.015 mm. It is very difficult to deduce the reason behind this behavior and further analysis
is required for this particular case. Although one thing is for sure that viscosity should be as
small as possible since it is a kind of error that has been introduced to smooth the brutal crack
propagation.
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Figure 4.22: Single edge notched shear test (MI). Load-displacement curve for regularization
length l = 0.0075 mm showing the effect of different viscosities.

Since viscosity acts like an artificial stiffness for the material, increase in its value causes a delay
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in the crack initiation, which is seen in both cases of tensile and shear tests.

4.3 Modeling of pre-existing crack

For the case of SENT test, we will follow three approaches to model the pre-existing crack in the
geometry as shown below

• Mesh induced crack (MI) : Here the crack is modeled with free boundaries starting at
the edge and reaching into the interior of the mesh.

• Mesh induced crack with prescribed d (MId) : This approach is similar to the first
one but also include the Dirichlet condition of d(x) = 1 on the crack surface.

• Phase field induced crack (PI) : Crack modeled through third approach is called phase
field induced crack. In this method, we define an initial condition of d(x) = 1 on a fixed
regular mesh for a crack that will be located at the same position as in other two approach.

4.3.1 Mesh induced crack (MId)

We have already presented the results for this strategy in detail in the earlier sections.

4.3.2 Mesh induced crack with prescribed phase field (MId)

Here, as in the last section we will have a mesh induced crack but along with that we will
prescribe d = 1 along the initial crack path. We refer reader to Fig. 2.7 which shows the basic
difference between MI and MId. In this approach also, we will present the results for viscosity
η = 0 kNs/mm2 and η = 1 × 10−6 kNs/mm2 and regularization lengths l = 0.015 mm and
l = 0.0075 mm. Same as before, the element size in the critical zone where crack is expected
to grow is h ≈ 0.001 mm with total DOF being 131,895. Fig. 4.23 shows the geometry and
boundary conditions for the specimen. At bottom boundary, we prescribe ux = uy = 0 mm and
at top we have traction free condition in x-direction and uy is as provided in (4.2). All other
boundaries including slit are traction free.
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Figure 4.23: Single edge notched tension test (MId) with geometry and boundary conditions.
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Figure 4.24: Single edge notched tension test (MId). Load-displacement curve for η = 1 ×
10−6 kNs/mm2 and η = 0 kNs/mm2.

From Fig. 4.24, we can see that for each case of regularization length, viscosity has the same
effect of smoothening the crack propagation. When compared to MI , the maximum attainable
force has decreased and crack nucleation has started earlier for both cases of l. We will present
the differences in section 4.3.4.

4.3.3 Phase field induced crack (PI)

In this strategy, pre-existing crack is modeled as a Dirichlet condition by definition of initial
conditions (d(x, 0) = 1) at nodes which we want to be treated as a crack. Such kind of technique
is also discussed in [25] but not in detail. Now, we will discuss the methods adopted to implement
this strategy.

Single row of nodes as a crack

In this method, we will apply the Dirichlet condition (d = 1) on a single row of the nodes that
passes through the mid plane (AB) of the geometry. Detailed illustration is given in Fig. 4.25.
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Figure 4.25: Single edge notched tension test (PI) with a single row of nodes as a crack.

We will take the case of viscosity η = 1×10−6 kNs/mm2 and regularization length of 0.0075 mm
for the remaining part of this section. However, same thing can be applied for other cases as well.
Fig. 4.26 shows the load displacement curve for element sizes of h ≈ 0.001 mm and h ≈ 0.0007
mm. We would like to discuss the element size h ≈ 0.001 mm firstly. We have this size in the
region where crack is expected to grow as well as where we have to model the pre-existing crack.
Although the crack is initiated and is fully propagated in the specimen but we observe a bump
in the middle of the curve. Observing the visualization file shows a kind of jump of the nodes
on AB. This behavior could be attributed to the fact that as compared to mesh induced crack,
this crack strategy has a higher stiffness as physically the elements are still present at the place
of crack. At some point during elongation due to tensile loading, the nodes with d = 1 decide to
shift to one particular side. That could be either below plane AB or above it. And not all nodes
make the same decision which leads to the bump we see in the graph.
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Figure 4.26: Single edge notched tension test (PI). Load-displacement curve for regularization
length l = 0.0075 mm obtained for η = 1× 10−6 kNs/mm2 applying the method of single row of
nodes as a crack for two different element sizes.
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As shown in Fig. 4.25 (a), we have a plane CD passing transversely through the crack. We would
like to see how the phase field value looks like across this plane. Fig. 4.27 shows us the shape of
phase field across different displacements. After reaching a displacement of u = 0.002 mm, the
distribution of d is not a smooth one as the nodes along AB are in a transition state. As the
increment in displacement continues, the nodes surrounding the plane AB are stretched giving
us an almost horizontal top.

(a) u = 1.0 × 10−3 mm (b) = 2.0 × 10−3 mm (c) u = 3.0 × 10−3 mm

Figure 4.27: Phase field pattern across plane CD at different displacements. On Y-axis we have
Phase field and on X-axis is the distance along plane CD in mm.

Such kind of behavior was observed in other cases of viscosity and regularization length also.
One of the observation was the effect of element size on the bump in load displacement curve.
As the size of element decreases (h ≈ 0.0007 mm), the irregularity in the curve is removed a
little. Same can be seen in Fig. 4.26. But this was applicable to a certain extent. For a element
size of h ≈ 0.0003 mm, we get a more flat curve but the solution becomes non-convergent after
crack initiation. But at least this gives us a idea that the element size or the arrangement of
elements being given initial condition plays a major role in this irregularity. Decreasing element
size downplays the abnormal behavior but still is not a correct explanation. In the next section,
we will observe the effect of one of the arrangement of elements on this irregularity.

Single row of elements as a crack

In this method, we will apply the initial condition of d = 1 on the two rows of nodes of elements
along AB. Fig. 4.28 shows the same. The mesh alignment has been changed but the element size
where crack is expected to grow as well as where initial crack is to be modeled are still the same
i.e. h ≈ 0.001 mm. We can call this crack as a ”fat crack” also.
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(b) Expanded view around plane AB showing the value
of phase field on the nodes.

Figure 4.28: Single edge notched tension test (PI) with a single row of elements as a crack.

In this case also, we plot the phase field values across plane CD as shown in Fig. 4.29. Since we
have two rows of nodes having d = 1, we get a flat shape on the top which continues to increase
as displacement increases. Values for different displacements are shown in the figure.

(a) u = 1.0 × 10−3 mm (b) u = 2.0 × 10−3 mm (c) u = 3.0 × 10−3 mm

Figure 4.29: Phase field pattern across plane CD for different displacements. On Y-axis we have
Phase field and on X-axis is the distance along plane CD in mm.

As can be seen from Fig. 4.30, the issue of bump in the curve is solved for both cases of regu-
larization length. In this case, we resolve the issue by explicitly giving one row of nodes below
the mid plane and one above so that the model doesn’t have to decide by itself in the middle
of simulation. And as expected, the crack initiation and propagation also takes place along the
mid plane AB.

48



0 1 2 3 4 5 6

·10−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Displacement [mm]

L
o
ad

[k
N
]

η = 0

η = 1× 10−6

(a) l = 0.015 mm

0 1 2 3 4 5 6

·10−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Displacement [mm]

L
o
ad

[k
N
]

η = 0

η = 1× 10−6

(b) l = 0.0075

Figure 4.30: Single edge notched tension test (PI). Load-displacement curve for η = 0 kNs/mm2

and η = 1× 10−6 kNs/mm2 applying the method of single row of elements as a crack.

For both regularization lengths, we get a similar kind of graphs as in case of MId. One thing
to notice in the case of PI is that in order to reach convergence in numerical implementation,
one has to increase the convergence limit a bit then compared to other strategies. In the next
section, we will compare all three modeling strategies.

4.3.4 Comparison of three pre-existing crack modeling strategies

In this section, we would like to compare the three presented strategies for initial crack for a
particular set of parameters. As previously taken, we choose element size h ≈ 0.001 mm along
with viscosity η = 1×10−6 kNs/mm2 and regularization length l = 0.0075 mm. Comparison can
be seen in Fig. 4.31.

Surprisingly, the results of MId and PI match to a much extent although MId is a kind of
variation of geometry based initial crack and PI is a type of Dirichlet condition based crack on a
regular mesh. Giving an initial condition for d seems to give the same results irrespective of the
fact that it is given on slit of a geometry based mesh or on regular mesh. And for both cases,
the crack initiation starts much before than MI type as can be seen from the figure also. Giving
d as an initial condition has kind of facilitated crack initiation.
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Figure 4.31: Single edge notched tension test. Comparison of three crack strategies for regular-
ization length l = 0.0075 mm, viscosity η = 1× 10−6 kNs/mm2 and h ≈ 0.001 mm.

4.4 Comparison with LEFM analytical results

The theory for LEFM has already been discussed in section 2.2.2. Here we will implement the
mode I fracture and will prove that our phase field model gives correct results for the case of
LEFM also by showing that the crack initiation occurs when KI becomes equal to KIC. In our
implementation, we will assume an incremental unit less quantity of time t with ∆t = 1× 10−5

in order to accommodate or solve for the cases with η 6= 0. We will increase the KI linearly with
time in 1000 steps so that when we reach time t = 0.01, our KI has become equal to KIC. At
this point, we expect a sudden increase in fracture energy and a drop in elastic energy as well.
And since this is the point where crack has started in the specimen, force on the top boundary
of the single edge notched test specimen will also feel a drop in its magnitude.

As usual, we have refined the area where crack initiation is expected. The element size in this
zone is h ≈ 0.001 mm with total DOF being 68,241. The starting time is zero and we run the
simulation until we reach twice the value of KIC i.e. t = 0.02. Viscosity η = 0 kNs/mm2 and
regularization length l = 0.0075 mm were chosen as input parameters for the simulation.

In Fig. 4.32, for MI case, we can observe the sudden change in curves of fracture energy, elastic
energy and force on top boundary. It is easy to find out the point where elastic energy reaches
a maximum and then starts decreasing. And for fracture energy curve, we can see the point
where the kink in the curve happens with help of its slope as shown in Fig. 4.36. Also, as shown
in Fig. 4.32, we observe the load on top boundary of the specimen w.r.t time and see a similar
trend of first increasing and then decreasing force. Time for sudden change in curve of elastic
energy, fracture energy and load on top boundary is t ≈ 0.0109 which is very close to one deduced
by LEFM. And at the same time we can observe crack initiation in our visualization file thus
implying that our phase field method is in good agreement with LEFM.
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Figure 4.32: Energy-time curve for elastic and fracture energy along with force-time curve on
secondary y-axis for regularization length l = 0.0075 mm and viscosity η = 0 kNs/mm2 for MI

crack.

In Fig. 4.33, we try to compare the fracture energies for different pre-existing crack modeling
strategies. For MI , the change in its fracture energy (represented as MIFE ) is evident from
the sudden increment in its slope but for MId fracture energy (represented as MIdFE

) and PI

fracture energy (represented as PIFE ), we don’t observe such behavior so it’s difficult to say
when exactly does the crack initiates. Also, there is a huge difference between the three fracture
energies. We would like to refer to the fracture energy contribution in eq.(2.34) which calculates
the total energy. For MI , d = 0 in the starting and it slowly increases to value of one near the
critical point (MICrack Ini.

). After this stage, we see a sudden increase in the energy. For MId

and PI , we already have the value of d = 1 in the equation in the initial time so the starting
values are higher than MI . However, the reason for difference between initial values for MId

and PI is not clearly known and requires further investigation.

We have also presented the elastic energy curves for three modeling strategies in Fig. 4.34. For
MI , it is easy to point out the crack initiation point from its curve (MIEE ) but for MId and
PI , we again see no such sharp change in the curves (MIdEE

and PIEE respectively). Same
smooth transition is observed for them for force on top boundary also as shown in Fig. 4.35.
Curves for MId and PI are in very close proximity for both cases of elastic energy and force
on top boundary. Although, the change in behavior and the maximum value reached for these
curves are happening in the proximity of KI = KIC but we can’t surely say when exactly does
the initiation happens. Further research is required to reach to any conclusion.
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Figure 4.33: Fracture energy-time curve with regularization length l = 0.0075 mm and viscosity
η = 0 kNs/mm2 for three pre-existing crack modeling strategies.
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Figure 4.34: Elastic energy-time curve with regularization length l = 0.0075 mm and viscosity
η = 0 kNs/mm2 for three pre-existing crack modeling strategies.
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Figure 4.35: Force-time curve for top boundary with regularization length l = 0.0075 mm and
viscosity η = 0 kNs/mm2 for three pre-existing crack modeling strategies.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

·10−2

0

50

100

150

200

250

300

350

400

Time

S
lo
p
e
of

F
ra
ct
u
re

E
n
er
gy

MI

MId

PI

KI = KIC

MICrack Ini.

Figure 4.36: Slope of fracture energy-time curve for regularization length l = 0.0075 mm and
viscosity η = 0 kNs/mm2 for three pre-existing crack modeling strategies.
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Chapter 5

Summary and Outlook

5.1 Summary

A phase field model for quasi-static brittle fracture under plane strain conditions has been suc-
cessfully implemented. A unique anisotropic expression for elasticity tensor has been derived for
facilitating the numerical implementation of the model. Different boundary conditions for single
edge notch tensile test have been studied in detail and a model with best fit is suggested. The
model has homogeneous Dirichlet conditions(displacement in x and y directions being zero) on
the bottom boundary and is provided with a prescribed load in y-direction on the top boundary
with x-direction being traction free. All other boundaries including slit are also traction free.
Effect of regularization lengths and viscosities have been thoroughly presented and discussed.
Decreasing regularization length seems to decrease the crack propagation rate in the material.
Viscosity being an artificial parameter, is added for stabilizing numerical treatment and should
be as small as possible in the governing equation for phase field. Elaborated analysis and com-
parison for each of the three modeling strategies for pre-existing crack have been carried out.
The results, of mesh induced crack(MI) with selected boundary conditions for single edge notch
tensile and shear stress, are in very good agreement with our literature reference while phase
field induced crack(PI) and mesh induced crack with prescribed phase field(MId) gives us ap-
proximately same results with respect to each other. We have discussed the difficulty faced in
implementing PI crack followed by a working solution procedure. The implemented phase field
model gives us very promising results when applied to LEFM mode I scenario. For mesh induced
crack, we can clearly identify our crack initiation point with slight deviation from standard LEFM
result. For other two modeling strategies, a change in behavior of energy curves is observed near
the expected point but it is difficult to point out the crack initiation point for these cases.

5.2 Outlook

The present work have been restricted to pre-refined meshes along the expected crack path. The
extension for this would be implementation of adaptive mesh refinement based on a suitable
criteria. Also, in case of phase field induced crack(PI), one can implement a case where three
row of nodes are taken as a crack and deviations in the results can be observed (if any). Another
topic to study is the history function. It is defined in Miehe work to depend on previous time step
displacement, but a variation could be studied with changing its definition to depend on present
time step. In case of LEFM, further research with respect to crack initiation could be carried out
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for phase field induced crack(PI) and mesh induced crack with prescribed phase field(MId) to
point out the exact crack initiation point. Taking advantage of the implemented template based
coding style, extension of the present algorithm to 3D case could be done easily and cases like
penny crack could be studied in detail.
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Appendix A

Identities

Here we will first provide some identities that have been used in the thesis work and then prove
each of them.

Identity(A.1) : A ·Na ⊗Nb = A ·
[
Na ⊗Nb

]
Identity(A.2) : Na ⊗ANb = −

[
Na ⊗Nb

]
·AT

Identity(A.3) : Ṅa ·Nb = ΩT

where A is a second order tensor, Na and Nb are two vectors. Ω is as usual a skew tensor with
property of Ω = −ΩT. Another useful result used in following proofs is A·Na = Aijei⊗ej ·naea =
Aianaei.

Proof of A.1

In index notation, we have

A ·Na ⊗Nb = Aajnjea ⊗ nbeb
= Aajnjnbea ⊗ eb

= Aapnpnqea ⊗ eq

= Aabnpnqδbpea ⊗ eq

= Aabea ⊗ eb · (npep ⊗ nqeq)
= A ·

[
Na ⊗Nb

]
(A.1)
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Proof of A.2

In index notation, we have

Na ⊗ANb = naea ⊗
[
Aijei ⊗ ej · nbeb

]
= naea ⊗

[
Aijnbδjbei

]
= Aijnjnaea ⊗ ei

= Ajinaniea ⊗ ej

= −Aijnanbδbiea ⊗ ej

= −
[
nanbea ⊗ eb

]
·Aijei ⊗ ej

= −
[
Na ⊗Nb

]
·AT

(A.2)

Here Aji = −Aij as A here is Ω having the property of Ω = −ΩT.

Proof of A.3

In index notation, we have
Ṅa ·Nb = ΩNa ·Nb

= Ωianaei · nbeb
= Ωianani

= nbeb · Ωianaei

= Nb ·ΩNa

= Ωba = −ΩT

(A.3)
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Appendix B

Time derivative of strain

In order to find time derivative of strain ε̇, we will first give a brief introduction to the skew
tensor as defined in Holzapfel [13].

Let Ω ∈ Rdim be a skew tensor. That means Ω represents the spin of the reference frame of one
observer relative to the reference frame of another observer. We have the relation

Ω = Q̇QT = −ΩT

where Q ∈ Rdim is an orthogonal tensor with the property Q−1 = QT.

Now consider a set of orthonormal basis vectors {ea},a=1,2,3 fixed in space. The set {Na} with
a = 1, 2, 3 of orthonormal eigenvectors will be

Na = Qea {a = 1, 2, 3}

Ṅa = Q̇ea {ėa = 0}
Now using the property of orthogonal tensor and its relation with skew tensor, we get

Ṅa = ( Q̇QT) Qea = ΩNa {a = 1, 2, 3} (B.1)

Components of the skew tensor Ω with respect to the basis {ea} are obtained from (B.1) as

Ωab = Na ·ΩNb = Na · Ṅb = −Ωba {Ω = −ΩT} (B.2)

with Ωaa = 0. In terms of spectral decomposition, we may deduce from (B.1) the representation

Ω =

3∑
a=1

Ṅa ⊗Na (B.3)

Now we can start to find time derivative of the strain ε̇ by starting with its spectral decomposition

ε =
3∑

a=1

λaNa ⊗Na
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ε̇−
3∑

a=1

λ̇aNa ⊗Na =
3∑

a=1

λa( Ṅa ⊗Na + Na ⊗ Ṅa)

=
3∑

a=1

( ΩNa ⊗Na + Na ⊗ΩNa) {using B.1}

= Ωε− εΩT {using A.1 and A.2}
= −ΩTε− εΩT

= −(
3∑

a=1

Na ⊗ Ṅa) · (
3∑
b=1

λbNb ⊗Nb) − (
3∑

a=1

λaNa ⊗Na) · (
3∑
b=1

Nb ⊗ Ṅb)

= −
3∑

a=1

3∑
b=1
b 6=a

ΩbaλbNa ⊗Nb −
3∑

a=1

3∑
b=1
b 6=a

ΩabλaNa ⊗Nb {using A.3}

=

3∑
a=1

3∑
b=1
b 6=a

Ωab(λb − λa) Na ⊗Nb

ε̇ =

3∑
a=1

λ̇aNa ⊗Na +

3∑
a=1

3∑
b=1
b6=a

Ωab(λb − λa) Na ⊗Nb

(B.4)
where λ̇a = Na · ε̇Na = ε̇aa ,a=1,2,3 denote the normal components (diagonal elements) and
Ωab(λb − λa) = Na · ε̇Nb = ε̇ab , a 6= b denote the shear components of ε̇ (off diagonal) with
respect to basis Na.
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Appendix C

Derivation of elasticity tensor

C.1 Derivation of C+

Here we will prove the expression used for C+ using expressions of ε̇ (eq.(3.41)) and σ̇+ (eq.(3.42)).
So we have the relation σ̇+ = C+ : ε̇, where

ε̇ =

3∑
a=1

λ̇aNa ⊗Na +

3∑
a=1

3∑
b=1
b6=a

Ωab(λb − λa) Na ⊗Nb

σ̇+ =

3∑
a=1

σ̇+
a Na ⊗Na +

3∑
a=1

3∑
b=1
b6=a

Ωab(σ
+
b − σ+

a ) Na ⊗Nb

Here we aim to have a double contraction of to be proven C+ expression with ε̇ and then show
them to be equal to σ̇+. For this, we will divide C+ into two parts as shown.

C+ =
3∑

a,b=1

∂σ+
a

∂λb
Na ⊗Na ⊗Nb ⊗Nb︸ ︷︷ ︸

C+
1

+
1

2

3∑
a,b=1
a6=b

σ+
b − σ+

a

λb − λa
( Na ⊗Nb ⊗Na ⊗Nb + Na ⊗Nb ⊗Nb ⊗Na)

︸ ︷︷ ︸
C+
2

(C.1)

Correspondingly, we will divide our main equation into two parts and prove them separately.

C+ : ε̇ = C+
1 : ε̇+ C+

2 : ε̇
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Starting with C+
1 : ε̇

C+
1 : ε̇ =

3∑
a,b=1

3∑
c=1

∂σ+
a

∂λb
λ̇cδbcδbcNa ⊗Na

+
3∑

a,b=1

3∑
c=1

3∑
d=1
d6=c

∂σ+
a

∂λb
Ωcd(λd − λc) δbcδbdNa ⊗Na

=

3∑
a,b=1

∂σ+
a

∂λb
λ̇bNa ⊗Na +

3∑
a,b=1

3∑
c=1
c 6=b

∂σ+
a

∂λb
Ωcb(λb − λc) δbc︸︷︷︸

0

Na ⊗Na

=
3∑

a,b=1

σ̇+
a Na ⊗Na + 0

=

3∑
a,b=1

σ̇+
a Na ⊗Na

Now for C+
2 : ε̇

C+
2 : ε̇ =

1

2

3∑
a,b=1
a6=b

3∑
c=1

σ+
b − σ+

a

λb − λa
λ̇c( δacδbc + δbcδac) Na ⊗Nb

+
1

2

3∑
a,b=1
a6=b

3∑
c=1

3∑
d=1
d6=c

σ+
b − σ+

a

λb − λa
Ωcd(λd − λc) ( δacδbd + δbcδad) Na ⊗Nb

=
1

2

3∑
a,b=1
a6=b

σ+
b − σ+

a

λb − λa
λ̇b( δab︸︷︷︸

0

+ δab︸︷︷︸
0

) Na ⊗Nb

+
1

2

3∑
a,b=1
a6=b

3∑
c=1
c6=b

σ+
b − σ+

a

λb − λa
Ωcb(λb − λc) ( δac) Na ⊗Nb

+
1

2

3∑
a,b=1
a6=b

3∑
c=1
c 6=a

σ+
b − σ+

a

λb − λa
Ωca(λa − λc) ( δbc) Na ⊗Nb

=
1

2

3∑
a,b=1
a6=b

σ+
b − σ+

a

λb − λa
Ωab(λb − λa) Na ⊗Nb

+
1

2

3∑
a,b=1
a6=b

σ+
b − σ+

a

λb − λa
Ωba(λa − λb) Na ⊗Nb

=2 · 1

2

3∑
a,b=1
a6=b

σ+
b − σ+

a

λb − λa
Ωab(λb − λa) Na ⊗Nb

=
3∑

a,b=1
a6=b

σ+
b − σ+

a

λb − λa
Ωab(λb − λa) Na ⊗Nb
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Now if we add the two derived expressions, we get the desired expression for σ̇+.

C+ : ε̇ = C+
1 : ε̇+ C+

2 : ε̇ =

3∑
a,b=1

σ̇+
a Na ⊗Na +

3∑
a,b=1
a6=b

σ+
b − σ+

a

λb − λa
Ωab(λb − λa) Na ⊗Nb

=σ̇+

C.2 Derivation of C−

So in this case also, we have a similar relation σ̇− = C− : ε̇ where we know the expressions for
σ̇− and ε̇ respectively.

ε̇ =

3∑
a=1

λ̇aNa ⊗Na +

3∑
a=1

3∑
b=1
b6=a

Ωab(λb − λa) Na ⊗Nb

σ̇− =

3∑
a=1

σ̇−a Na ⊗Na +

3∑
a=1

3∑
b=1
b6=a

Ωab(σ
−
b − σ−a ) Na ⊗Nb

And for the expression of C−, we will divide it into two parts again as shown.

C− =
3∑

a,b=1

∂σ−a
∂λb

Na ⊗Na ⊗Nb ⊗Nb︸ ︷︷ ︸
C−1

+
1

2

3∑
a,b=1
a6=b

σ−b − σ−a
λb − λa

( Na ⊗Nb ⊗Na ⊗Nb + Na ⊗Nb ⊗Nb ⊗Na)

︸ ︷︷ ︸
C−2

(C.2)

We will divide our main equation into two parts and prove them separately.

C− : ε̇ = C−1 : ε̇+ C−2 : ε̇

Starting with C−1 : ε̇

C−1 : ε̇ =

3∑
a,b=1

3∑
c=1

∂σ−a
∂λb

λ̇cδbcδbcNa ⊗Na

+
3∑

a,b=1

3∑
c=1

3∑
d=1
d6=c

∂σ−a
∂λb

Ωcd(λd − λc) δbcδbdNa ⊗Na

=
3∑

a,b=1

∂σ−a
∂λb

λ̇bNa ⊗Na +
3∑

a,b=1

3∑
c=1
c 6=b

∂σ−a
∂λb

Ωcb(λb − λc) δbc︸︷︷︸
0

Na ⊗Na

=
3∑

a,b=1

σ̇−a Na ⊗Na + 0

=

3∑
a,b=1

σ̇−a Na ⊗Na
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Now for C−2 : ε̇

C−2 : ε̇ =
1

2

3∑
a,b=1
a6=b

3∑
c=1

σ−b − σ−a
λb − λa

λ̇c( δacδbc + δbcδac) Na ⊗Nb

+
1

2

3∑
a,b=1
a6=b

3∑
c=1

3∑
d=1
d6=c

σ−b − σ−a
λb − λa

Ωcd(λd − λc) ( δacδbd + δbcδad) Na ⊗Nb

=
1

2

3∑
a,b=1
a6=b

σ−b − σ−a
λb − λa

λ̇b( δab︸︷︷︸
0

+ δab︸︷︷︸
0

) Na ⊗Nb

+
1

2

3∑
a,b=1
a6=b

3∑
c=1
c6=b

σ−b − σ−a
λb − λa

Ωcb(λb − λc) ( δac) Na ⊗Nb

+
1

2

3∑
a,b=1
a6=b

3∑
c=1
c 6=a

σ−b − σ−a
λb − λa

Ωca(λa − λc) ( δbc) Na ⊗Nb

=
1

2

3∑
a,b=1
a6=b

σ−b − σ−a
λb − λa

Ωab(λb − λa) Na ⊗Nb

+
1

2

3∑
a,b=1
a6=b

σ−b − σ−a
λb − λa

Ωba(λa − λb) Na ⊗Nb

=2 · 1

2

3∑
a,b=1
a6=b

σ−b − σ−a
λb − λa

Ωab(λb − λa) Na ⊗Nb

=

3∑
a,b=1
a6=b

σ−b − σ−a
λb − λa

Ωab(λb − λa) Na ⊗Nb

Now if we add the two derived expressions, we get the desired expression for σ̇−.

C− : ε̇ = C−1 : ε̇+ C−2 : ε̇ =

3∑
a,b=1

σ̇−a Na ⊗Na +

3∑
a,b=1
a6=b

σ−b − σ−a
λb − λa

Ωab(λb − λa) Na ⊗Nb

= σ̇−

A similar kind of expression for C is found in Klinsmann et al.[15] also.
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